题目内容
【题目】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
【答案】(1)见解析;(2) 当O运动到OA=OC处,四边形AECF是矩形.理由见解析.
【解析】
(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;
(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.
(1)当点O运动到AC中点时,四边形AECF是矩形;理由如下:
如图所示:
∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO;
(2)当O运动到OA=OC处,四边形AECF是矩形.理由如下:
∵OA=OC,
∴四边形AECF是平行四边形,
∵CF是∠BCA的外角平分线,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四边形AECF是矩形.
【题目】为了解某校学生的身高情况,王老师随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:
组别 | 身高 |
身高情况分组表
根据图表提供的信息,回答下列问题:
(1)样本中,女生身高在组的人数有_________人;
(2)在上面的扇形统计图中,表示组的扇形的圆心角是_________°;
(3)已知该校共有男生800人,女生760人,请估计该校身高在之间的学生约有多少人?
【题目】某中学1000名学生参加了“环保知识竞赛”,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x<90 | b | c |
合计 | ■ | 1 |
(1)写出,,的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;