题目内容
【题目】王晓同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图,在平行四边形ABCD中, .
求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程.
【答案】(1)AC=BD,矩形;(2)证明详见解析.
【解析】
(1)根据对角线相等的平行四边形是矩形,可得答案;
(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC的度数,根据矩形的判定,可得答案.
(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是 矩形;
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC.
在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,
∴△ADC≌△BCD.∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°.
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形.
练习册系列答案
相关题目