题目内容
【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.
(1)求反比例函数的解析式;
(2)直接写出当y<4时x的取值范围.
【答案】(1)y=;(2)反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>-2
【解析】
(1)把P的坐标代入直线的解析式,即可求得P的坐标,然后根据关于y轴对称的两个点之间的关系,即可求得P'的坐标,然后利用待定系数法即可求得反比例函数的解析式;
(2)根据反比例函数的增减性即可求得x的范围.
(1)把P(﹣2,a)代入直线y=-2x解析式得:a=4,即P(﹣2,4),
∴点P关于y轴对称点P′为(2,4),
代入反比例解析式得:k=8,
则反比例解析式为y=;
(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>-2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某班“数学兴趣小组”对函数y=+x的图象与性质进行了探究,探究过程如下,请补充完整.
(1)函数y=+x的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): .
(5)小明发现,①该函数的图象关于点( , )成中心对称;
②该函数的图象与一条垂直于x轴的直线无交点,则这条直线为 ;
③直线y=m与该函数的图象无交点,则m的取值范围为 .