题目内容

8.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200km,运行周期127分钟.若还知道引力常量和月球平均半径,仅利用以上条件能求出的是(  )
A.月球表面的重力加速度B.月球对卫星的吸引力
C.卫星绕月球运行的线速度D.月球的平均密度

分析 若知道卫星轨道高度和月球半径,则可知卫星轨道半径,又知道引力常量和周期,则由加速度的周期表达式,可得加速度,由万有引力提供向心力的周期表达式可得月球质量,进一步计算密度.由于不知道卫星质量故不能求引力,由半径和周期可得线速度.

解答 解:由题可知,已知卫星的轨道半径,周期,引力常量,则:
A、由万有引力:$G\frac{Mm}{{r}^{2}}=m\frac{4{π}^{2}}{{T}^{2}}r$,可得:$M=\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}$,可求得M,由$G\frac{Mm}{{R}^{2}}=mg$,可得:$g=\frac{GM}{{R}^{2}}$,故A正确.
B、由于不知道卫星质量故不能求引力,故B错误.
C、线速度:$v=\frac{2πr}{T}$,故C正确.
D、由万有引力:$G\frac{Mm}{{r}^{2}}=m\frac{4{π}^{2}}{{T}^{2}}r$,可得:$M=\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}$,故$ρ=\frac{M}{V}=\frac{\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}}{\frac{4}{3}π{R}^{3}}$=$\frac{3π{r}^{3}}{G{T}^{2}{R}^{3}}$,故D正确.
故选:ACD.

点评 本题是尝试求解的比较简单的题目,给定的量比较多,且都是直接求解不需要变形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网