ÌâÄ¿ÄÚÈÝ

9£®ÈçͼËùʾ£¬Õæ¿ÕÖÐÇøÓòIºÍÇøÓò¢òÄÚ´æÔÚ×ÅÓëÖ½Ãæ´¹Ö±µÄ·½ÏòÏà·´µÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óС¾ùΪB£®ÔÚÇøÓòIIµÄÉϱ߽çÏßÉϵÄNµã¹Ì¶¨Ò»¸ºµÄµãµçºÉ£¬²¢²ÉÈ¡´ëʩʹֻ֮¶ÔÇøÓòIIÒÔÉϿռä²úÉúÓ°Ï죮һ´øÕýµçµÄÁ£×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬×ÔÇøÓòIϱ߽çÏßÉϵÄOµãÒÔËÙ¶Èv0´¹Ö±Óڴų¡±ß½ç¼°´Å³¡·½ÏòÉäÈë´Å³¡£¬¾­¹ýÒ»¶Îʱ¼äÁ£×Óͨ¹ýÇøÓò¢ò±ß½çÉϵÄO'µã£¬×îÖÕÓÖ´ÓÇøÓòIϱ߽çÉϵÄPµãÉä³ö£®Í¼ÖÐN¡¢PÁ½µã¾ùδ»­³ö£¬µ«ÒÑÖªNµãÔÚO¡äµãµÄÓÒ·½£¬ÇÒNµãÓëO¡äµãÏà¾àL£®ÇøÓòIºÍ¢òµÄ¿í¶ÈΪd=$\frac{m{v}_{0}}{2qB}$£¬Á½ÇøÓòµÄ³¤¶È×ã¹»´ó£®NµãµÄ¸ºµçºÉËù´øµçºÉÁ¿µÄ¾ø¶ÔֵΪQ=$\frac{Lm{v}_{0}^{2}}{kq}$£¨ÆäÖÐkΪ¾²µçÁ¦³£Á¿£©£®²»¼ÆÁ£×ÓµÄÖØÁ¦£¬Çó£º
£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶£»
£¨2£©Á£×ÓÔÚOÓëO¡äÖ®¼äÔ˶¯¹ì¼£µÄ³¤¶ÈºÍÎ»ÒÆµÄ´óС£»
£¨3£©Á£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼ä¼°O¡¢PÁ½µã¼äµÄ¾àÀ룮

·ÖÎö £¨1£©ÓÉÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉÇóµÃ°ë¾¶¹«Ê½£®
£¨2£©ÓÉÓÚÇøÓò¢ñºÍ¢ò´Å³¡µÄ´óСÏàµÈ·½ÏòÏà·´£¬ËùÒÔ´ÓOµã´¹Ö±ÈëÉäµÄÁ£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯µÄ·½ÏòÏà·´£®Ô˶¯¹ì¼£¾ßÓжԳÆÐÔ£®ÓÉÌâÒâÖª´Å³¡¿í¶ÈdµÄ±í´ïʽ¿ÉÒÔ¿´³ö°ë¾¶Óë¾àÀëd£¬ÔÙÓɼ¸ºÎ¹ØÏµ¹ØÏµÕÒµ½Á£×ÓÔÚÁ½¸ö´Å³¡ÇøÓòÄÚÆ«×ªµÄ½Ç¶È£¬´Ó¶øÄÜÇó³ö·³ÌºÍÎ»ÒÆ£®
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羭¹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{l}^{2}}=\frac{m{{v}_{0}}^{2}}{l}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£¬×ª¹ý°ëȦºóÔٴλص½¢òÇøµÄÉϱßÔµ£¬½øÈë¢òÇøºÍ¢ñÇø·Ö±ð×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÔ˶¯µÄ¶Ô³ÆÐÔºÍÏà¹Ø¼¸ºÎ¹ØÏµ£¬ÄÜÇó³öÁ£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼ä¼°O¡¢PÁ½µã¼äµÄ¾àÀ룮

½â´ð ½â£º£¨1£©ÓÉ$qB{v}_{0}=\frac{m{{v}_{0}}^{2}}{R}$µÃ¹ìµÀ°ë¾¶Îª£º$R=\frac{m{v}_{0}}{qB}$
£¨2£©ÓÉÌâÒâÖª£ºR=2d£¬
  ËùÒÔÁ£×ÓÔڴų¡ÖÐÆ«×ª½Ç¶È£º$¦È=30¡ã=\frac{¦Ð}{6}$
  Ô˶¯¹ì¼£µÄ³¤¶È£º$s=2R¦È=\frac{¦Ðm{v}_{0}}{3qB}$
  Î»ÒÆµÄ´óС£ºx=4Rsin15¡ã=4Rsin£¨45¡ã-30¡ã£©=$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羭¹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹
  Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£®
  Ôڴų¡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{1}=\frac{2¦Ðm}{qB}$
  Ôڴų¡ÖÐÔ˶¯¶ÔÓ¦µÄ×ܽǶȣº$¦Á=4¦È=\frac{2¦Ð}{3}$
  Ôڴų¡ÖÐÔ˶¯µÄ×Üʱ¼ä£º${t}_{1}=\frac{¦Á}{2¦Ð}{T}_{1}=\frac{2¦Ðm}{3qB}$
  Ôڵ糡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{2}=\frac{2¦ÐL}{{v}_{0}}$
  Ôڵ糡ÖÐÔ˶¯Ê±¼ä£º${t}_{2}=\frac{{T}_{2}}{2}=\frac{¦ÐL}{{v}_{0}}$
  ÕýµçºÉ´ÓOµãµ½PµãµÄʱ¼ä£º$t={t}_{1}+{t}_{2}=\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$
  ÕýµçºÉ´ÓOµãµ½O¡äµãµÄ¹ý³ÌÖÐÑØÆ½ÐÐÓڱ߽çÏß·½ÏòÆ«ÒÆµÄ¾àÀ룺
${x}_{1}=2£¨R-Rcos30¡ã£©=£¨2-\sqrt{3}£©R$ 
  µ±L¡Ýx1  ʱ£¨Èçͼ¼×Ëùʾ£©£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º
${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$
  µ±L£¼x1 Ê±£¨ÈçͼÒÒËùʾ£©£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º
${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$
´ð£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶$\frac{m{v}_{0}}{qB}$£®
£¨2£©Á£×ÓÔÚOÓëO¡äÖ®¼äÔ˶¯¹ì¼£µÄ³¤¶ÈΪ$\frac{¦Ðm{v}_{0}}{3qB}$£¬Î»ÒƵĴóС$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$£®
£¨3£©Á£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼äΪ$\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$£¬O¡¢PÁ½µã¼äµÄ¾àÀ룺
¢Ùµ±L¡Ýx1  ʱ£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$£»
¢Úµ±L£¼x1 Ê±£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$£®

µãÆÀ ±¾ÌâµÄö¦µãÔÚÓÚ£º¢ÙÁ£×ÓÔÚ¢ñ¡¢¢òÔ˶¯×öÔÈËÙÔ²ÖÜÔ˶¯ÓÉÓÚת¶¯·½ÏòÏà·´£¬ËùÒÔ¾ßÓжԳÆÐÔ£¬ÇÒÓйØÏµR=2d£¬ÕâΪºóÐø¼ÆËãÌṩ·½±ã£®¢ÚÓÉÓÚNµãµÄ¸ºµçºÉËù´øµçºÉÁ¿µÄ¾ø¶ÔֵΪ$Q=\frac{Lm{{v}_{0}}^{2}}{kq}$£¬Ôòq¡¢QÖ®¼äµÄ¿âÂØÁ¦$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬¸ÕºÃʹqÈÆNµã×ö°ë¾¶ÎªLµÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÕâÑùÕû¸öÔ˶¯¹ì¼£¾Í·Ç³£¶Ô³Æ£¬Ê±¼äÓë¾àÀëºÜÈÝÒ×Çó³ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø