题目内容
2.(1)求物块与地面间的动摩擦因数μ;
(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;
(3)求物块在反向运动过程中克服摩擦力所做的功W.
分析 (1)对物块应用动能定理可以求出动摩擦因数.
(2)对物块应用动量定理可以求出作用力大小.
(3)应用动能定理可以求出物块反向运动过程克服摩擦力所做的功.
解答 解:(1)由动能定理,有-μmgs=$\frac{1}{2}$mv2-$\frac{1}{2}$mv${\;}_{0}^{2}$
代入数据可得:μ=0.15
(2)由动量定理,有F△t=mv′-mv
可得F=120 N
(3)物块在反向运动过程中克服摩擦力所做的功等于物体动能的减小量,则:W=$\frac{1}{2}$mv′2=6.25J
答:(1)求物块与地面间的动摩擦因数是0.15;
(2)若碰撞时间为0.05s,碰撞过程中墙面对物块平均作用力的大小是120N;
(3)物块在反向运动过程中克服摩擦力所做的功是5.25J.
点评 本题考查了求动摩擦因数、作用力、克服摩擦力做功,分析清楚物体运动过程、应用动能定理、动量定理即可正确解题.
练习册系列答案
相关题目
7.水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上.该工件初速度为零,当它在传送带上滑动一段距离后速度达到v后与传送带保持相对静止.设工件质量为m,它与传送带间的滑动摩擦系数为μ,则在工件相对传送带滑动的过程中下列说法正确的是( )
| A. | 摩擦力对工件做的功为$\frac{1}{2}$mv2 | |
| B. | 系统增加的内能为$\frac{1}{2}$mv2 | |
| C. | 传送带需额外做的功为$\frac{1}{2}$mv2 | |
| D. | 工件相对于传送带滑动的路程大小为$\frac{{v}^{2}}{2μg}$ |
14.关于磁场和磁感线的描述,下列说法正确的是( )
| A. | 磁感线从磁体N极出发到S极终止 | |
| B. | 某点磁场的方向与在该点放置一小段通电导线所受的磁场力的方向一致 | |
| C. | 小磁针N极受磁场力的方向就是该处磁感应强度的方向 | |
| D. | 在两条磁感线的空隙处不存在磁场 |