ÌâÄ¿ÄÚÈÝ
13£®| A£® | ͨ¹ýRµÄµçºÉÁ¿Îªq=$\frac{BLd}{R+r}$ | |
| B£® | À뿪´Å³¡Ë²¼ä£¬°ôABµÄËÙ¶È´óСΪv=$\frac{mg£¨R+r£©}{{B}^{2}{L}^{2}}$ | |
| C£® | ¸Ã¹ý³ÌÖа²ÅàÁ¦Ëù×öµÄ¹¦ÎªW=mg£¨h+d£©-$\frac{{m}^{2}{g}^{2}£¨R+r£©^{2}}{2{B}^{2}{L}^{2}}$ | |
| D£® | µ±h£¼$\frac{{m}^{2}g£¨R+r£©^{2}}{2{B}^{4}{L}^{4}}$ʱ£¬°ô½øÈë´Å³¡ºóÏȼõËÙºóÔÈËÙ |
·ÖÎö ¸ù¾Ýq=$\frac{¡÷¦µ}{R+r}$Çóͨ¹ýRµÄµçºÉÁ¿£®°ôABÔÚÀ뿪´Å³¡Ç°ÒѾ×öÔÈËÙÖ±ÏßÔ˶¯£¬´¦ÓÚÆ½ºâ״̬£¬Óɰ²ÅàÁ¦¹«Ê½¼°Æ½ºâÌõ¼þ¿ÉÒÔÇó³ö°ôÀ뿪´Å³¡Ê±µÄËÙ¶È£®´ÓAB°ô¿ªÊ¼Ï»¬µ½¸ÕÀ뿪´Å³¡µÄ¹ý³Ì£¬ÔËÓö¯Äܶ¨Àí¿ÉÒÔÇó³ö°²ÅàÁ¦Ëù×öµÄ¹¦£®¸ù¾Ý°ô½øÈë´Å³¡Ê±µÄËÙ¶È´óС£¬·ÖÎö°ôÔڴų¡ÖеÄÔ˶¯Çé¿ö£®
½â´ð ½â£ºA¡¢Í¨¹ýRµÄµçºÉÁ¿Îª q=$\frac{¡÷¦µ}{R+r}$=$\frac{BLd}{R+r}$£®¹ÊAÕýÈ·£®
B¡¢MN°ôÀ뿪´Å³¡±ß½çǰ×öÔÈËÙÔ˶¯£¬ÉèËÙ¶ÈΪv£¬Ôò°ô²úÉúµÄµç¶¯ÊÆÎª E=BLv
µç·ÖеçÁ÷ I=$\frac{E}{R+r}$
¶ÔAB°ô£¬ÓÉÆ½ºâÌõ¼þµÃ mg-BIL=0
½âµÃ v=$\frac{mg£¨R+r£©}{{B}^{2}{L}^{2}}$£®¹ÊBÕýÈ·£®
C¡¢´ÓAB°ô¿ªÊ¼Ï»¬µ½¸ÕÀ뿪´Å³¡µÄ¹ý³Ì£¬ÔËÓö¯Äܶ¨ÀíµÃ
mg£¨h+d£©-W=$\frac{1}{2}m{v}^{2}$
½âµÃ W=mg£¨h+d£©-$\frac{{m}^{3}{g}^{2}£¨R+r£©^{2}}{{B}^{4}{L}^{4}}$£®¹ÊC´íÎó£®
D¡¢Èô°ô½øÈë¾Í¿ªÊ¼×öÔÈËÙÔ˶¯£¬Ôò´Ëʱ h=$\frac{{v}^{2}}{2g}$=$\frac{{m}^{2}g£¨R+r£©^{2}}{2{B}^{4}{L}^{4}}$
µ±h£¼$\frac{{m}^{2}g£¨R+r£©^{2}}{2{B}^{4}{L}^{4}}$ʱ£¬°ô½øÈë´Å³¡Ê±ÖØÁ¦´óÓÚ°²ÅàÁ¦£¬°ôÏÈ×ö¼ÓËÙÔ˶¯£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºAB
µãÆÀ ±¾ÌâÒªÕÆÎÕ¸ÐÓ¦µçºÉÁ¿¹«Ê½q=$\frac{¡÷¦µ}{R+r}$£¬Òª»áÍÆµ¼°²ÅàÁ¦µÄ±í´ïʽ£¬Í¬Ê±ÒªÕýÈ··ÖÎöÄÜÁ¿ÊÇÈçºÎת»¯µÄ£¬´ÓÁ¦ºÍÄÜÁ½¸ö½Ç¶ÈÑо¿µç´Å¸ÐÓ¦ÏÖÏó£®
| A£® | ±£³Ö¿ª¹ØS±ÕºÏ£¬½«RÉϵĻ¬Æ¬ÏòÓÒÒÆ¶¯ | |
| B£® | ±£³Ö¿ª¹ØS±ÕºÏ£¬½«A¡¢BÁ½¼«°å·Ö¿ªÒ»Ð© | |
| C£® | ¶Ï¿ª¿ª¹ØSºó£¬½«A¡¢BÁ½¼«°åµÄÕý¶ÔÃæ»ý¼õСһЩ | |
| D£® | ¶Ï¿ª¿ª¹ØSºó£¬½«A¡¢BÁ½¼«°å·Ö¿ªÒ»Ð© |
| A£® | ÎïÌåµÄ³õËÙ¶ÈÊÇ10 m/s | B£® | ÎïÌåµÄ¼ÓËÙ¶ÈÊÇ-4 m/s | ||
| C£® | ÎïÌåµÄ¼ÓËÙ¶ÈÊÇ8 m/s2 | D£® | ÎïÌåÔÚ2 sÄ©µÄËÙ¶ÈΪ-6 m/s |
| A£® | 0 | B£® | ¦Ìg | C£® | $\frac{¦ÌMg}{m}$ | D£® | $\frac{¦Ìmg}{M}$ |