ÌâÄ¿ÄÚÈÝ

17£®ÈçͼËùʾ£¬Á½Æ½ÐнðÊô°å£¨¿ªÊ¼Ê±²»´øµç£©Ë®Æ½·ÅÖã¬ÔÚ°å¼ä´æÔÚ·½Ïò´¹Ö±Ö½ÃæÏòÍâ¡¢´Å¸ÐӦǿ¶È´óСΪBµÄÔÈÇ¿´Å³¡£¨Í¼ÖÐδ»­³ö£©£®Ä³´øÕýµçµÄÀë×ÓÒÔ´óСΪv0µÄ³õËÙ¶ÈˮƽÏòÓÒÌù×ÅÉÏ°å½øÈ˰å¼ä£¬¸ÕºÃ´Óϰå±ßÔµÉä³ö£¬Éä³öʱËÙ¶È·½ÏòÓëϰå³É60¡ã½Ç£¬Èô³·È¥´Å³¡£¬ÔÚÁ½Æ½ÐнðÊô°å¼ä¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£¬Ê¹¸ÃÀë×ÓÒÔÔ­À´µÄ³õËٶȽøÈ˸ÃÇøÓò£®Ò²Ç¡ºÃ´Óϰå±ßÔµÉä³ö£¬²»¼ÆÀë×ÓµÄÖØÁ¦£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶È´óСΪ$\frac{4}{3}$Bv0
B£®ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶È´óСΪ$\frac{2\sqrt{3}B{v}_{0}}{3}$
C£®Àë×Ó´©¹ýµç³¡ºÍ´Å³¡µÄʱ¼äÖ®±ÈΪ$\frac{2\sqrt{3}}{2¦Ð}$
D£®Àë×Ó´©¹ýµç³¡ºÍ´Å³¡µÄʱ¼äÖ®±ÈΪ$\frac{2\sqrt{3}¦Ð}{9}$

·ÖÎö ¸ù¾ÝÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦¿ÉÇóµÃÀë×ÓÔڴų¡Öеİ뾶£¬ÔÙÓɼ¸ºÎ¹ØÏµ¿ÉÇóµÃdºÍL£¬ÏÖ¸ù¾ÝÀë×ÓÔڵ糡ÖеÄÀàÆ½Å×Ô˶¯¹æÂÉ¿ÉÇóµÃµç³¡Ç¿¶È£»
ÔÙ¸ù¾ÝÔ²ÖÜÔ˶¯ºÍÀàÆ½Å×Ô˶¯¹æÂÉ¿ÉÇóµÃÔ˶¯Ê±¼ä£®

½â´ð ½â£ºA¡¢Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯£¬ÓÉÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦¿ÉµÃ£º
Bqv0=m$\frac{{v}_{0}^{2}}{R}$
½âµÃ£ºR=$\frac{m{v}_{0}}{Bq}$£»
Óɼ¸ºÎ¹ØÏµ¿ÉÖª°å³¤L=Rcos30¡ã=$\frac{\sqrt{3}}{2}R$£»d=R-Rsin30¡ã=$\frac{R}{2}$
ÔÙ¸ù¾Ý´øµçÁ£×ÓÔڵ糡ÖÐµÄÆ½Å×Ô˶¯¹æÂÉ¿ÉÖª
L=v0t
d=$\frac{1}{2}$at2
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª£º
a=$\frac{Eq}{m}$
ÁªÁ¢½âµÃE=$\frac{4}{3}B{v}_{0}$£»¹ÊAÕýÈ·£¬B´íÎó£»
C¡¢Á£×ÓÔڵ糡ÖÐÔ˶¯Ê±¼ät1=$\frac{L}{{v}_{0}}$=$\frac{\sqrt{3}R}{2{v}_{0}}$
Àë×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ät2=$\frac{\frac{1}{6}¡Á2¦ÐR}{{v}_{0}}$=$\frac{¦ÐR}{3{v}_{0}}$
¹Ê$\frac{{t}_{1}}{{t}_{2}}$=$\frac{\frac{\sqrt{3}R}{2{v}_{0}}}{\frac{¦ÐR}{3{v}_{0}}}$=$\frac{3\sqrt{3}}{2¦Ð}$£¬¹ÊCD´íÎó£»
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡ºÍ´Å³¡ÖеÄÔ˶¯¹æÂÉ£¬Òª×¢ÒâÃ÷È·´øµçÁ£×ÓÔڵ糡ÖÐ×öƽÅ×Ô˶¯£¬¶øÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯£¬Òª×¢ÒâÃ÷È·ËüÃǸ÷×ԵĹæÂÉÓ¦Ó㬲ÅÄÜ׼ȷÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø