题目内容
4.假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则( )| A. | 根据公式F=G$\frac{Mm}{r^2}$,可知地球提供的向心力将减小到原来的$\frac{1}{4}$倍 | |
| B. | 根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 | |
| C. | 根据公式$F=m\frac{v^2}{r}$,可知卫星运动的线速度将增大到原来的$\sqrt{2}$倍 | |
| D. | 根据公式F=m$\frac{v^2}{r}$,可知卫星所需要的向心力将减小到原来的$\frac{1}{2}$倍 |
分析 卫星绕地球做圆周运动,万有引力提供向心力,应用万有引力公式与牛顿第二定律求出线速度,然后分析答题.
解答 解:A、万有引力提供向心力,由F=G$\frac{Mm}{{r}^{2}}$可知,当卫星的轨道半径变为原来的2倍时,向心力变为原来的$\frac{1}{4}$,故A正确,D错误;
B、卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:G$\frac{Mm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$,解得:v=$\sqrt{\frac{GM}{r}}$,当卫星轨道半径增大到原来的2倍,则卫星的线速度变为原来的$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$倍,故BC错误;
故选:A.
点评 本题考查了万有引力定律的应用,知道万有引力提供卫星做圆周运动的向心力是解题的关键,应用万有引力公式与牛顿第二定律可以解题;解题时要注意,当卫星轨道半径改变时其角速度也发生变化.
练习册系列答案
相关题目
14.在“探究导体电阻与其影响因素的定量关系”实验验中,某同学为了探究不同材料电阻率,找了三根横截面积相同的电阻丝L1、L2、L3,首尾相连(连接处电阻不计),接成如图1所示的实验电路.M为电阻丝L3的左端点,O为电阻丝L1的右端点,P是电阻丝上可移动的接触点.在实验过程中,电流表读数始终为I=0.50A,测得电压表读数U随OP间距离L的变化如下表:
(1)在图2中绘出电压表读数U随OP间距离L变化的图线;
(2)电阻丝的电阻率最小的是L2(填“L1”、“L2”、“L3”)
| L/mm | 60 | 70 | 80 | 90 | 100 | 120 | 140 | 160 | 180 | 200 | 210 | 220 | 230 | 240 |
| U/V | 3.95 | 4.50 | 5.10 | 5.90 | 6.50 | 6.65 | 6.82 | 6.93 | 7.02 | 7.15 | 7.85 | 8.50 | 9.05 | 9.75 |
(2)电阻丝的电阻率最小的是L2(填“L1”、“L2”、“L3”)
15.下列事例哪些应用了光的全反射现象( )
| A. | 光导纤维通讯 | |
| B. | 某些光学仪器镜头镀增透膜 | |
| C. | 某些光学仪器中用等腰直角玻璃三棱镜改变光路90° | |
| D. | 用白光照肥皂膜看到彩色条纹 |
19.
如图所示,空气中有一横截面为半圆环的均匀透明柱体,其内圆半径为r,外圆半径为R,R=$\sqrt{2}$r.现有一束单色光垂直于水平端面A射入透明柱体,只经过两次全反射就垂直于水平端面B射出.设透明柱体的折射率为n,光在透明柱体内传播的时间为t,若真空中的光速为c,则( )
| A. | n可能为$\sqrt{3}$ | B. | t可能为$\frac{2\sqrt{2}r}{c}$ | C. | n可能为2 | D. | t可能为$\frac{4.8r}{c}$ |
13.水平传送带匀速运动,速度大小为v.现将一个小工件(初速度为零)轻轻放在传送带上,它将在传送带上滑行一段时间后速度才达到v,而后与传送带保持相对静止.设工件的质量m,它与传送带间的动摩擦因数为μ,则在这段相对滑行的过程中( )
| A. | 滑动摩擦力对工件做功一定大于$\frac{m{v}^{2}}{2}$ | |
| B. | 工件的机械能增量为$\frac{m{v}^{2}}{2}$ | |
| C. | 工件相对于传送带滑动的路程为$\frac{{v}^{2}}{2μg}$ | |
| D. | 传送带对工件做功为零 |
20.某人用手将质量为1kg的哑铃由静止向上提起2m,这时哑铃的速度为4m/s(g取10m/s2),在这个过程中,下列说法不正确的是( )
| A. | 哑铃克服重力做功20J | B. | 合外力对哑铃做功8J | ||
| C. | 手对哑铃做功8J | D. | 哑铃的机械能增加28J |