ÌâÄ¿ÄÚÈÝ
1£®£¨1£©³¤Ä¾°åB¶ÔÎï¿éA×öµÄ¹¦£»
£¨2£©ÈôÔÚÎï¿é»¬µ½³¤Ä¾·¹BµÄÖеãʱ£¬¼ô¶ÏϸÉþ£¬ÊÔÅжÏÎï¿é»á²»»á´Ó³¤Ä¾°åÉÏ»¬À룿
·ÖÎö £¨1£©·Ö±ðÒÔAºÍBCÕûÌåΪÑо¿¶ÔÏ󣬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öËüÃǵļÓËÙ¶È£®¸ù¾ÝÎï¿é´Ó³¤Ä¾°åÉÏ»¬Àëʱ£¬BÓëAµÄÎ»ÒÆÖ®²îµÈÓÚL£¬ÓÉÎ»ÒÆ¹«Ê½Çó³öÔ˶¯Ê±¼ä£¬µÃµ½Îï¿éAµÄËÙ¶È£¬ÔÙÓɶ¯Äܶ¨ÀíÇó³¤Ä¾°åB¶ÔÎï¿éA×öµÄ¹¦£®
£¨2£©Îï¿é»¬µ½³¤Ä¾·¹BµÄÖеãʱ£¬ÀûÓÃÉÏÌâµÄ·½·¨Çó³ö´ËʱAºÍBµÄËÙ¶È£¬¼ÙÉèAÇ¡ºÃ²»´Ó°åÉÏ»¬À룬Á½ÕßËÙ¶ÈÏàµÈ£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂɺÍÄÜÁ¿Êغ㶨ÂÉ·ÖÎö£®
½â´ð ½â£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
¶ÔAÓÐ ¦Ìmg=maA£®
¶ÔBCÕûÌåÓÐ £¨3m+2m£©g-¦Ìmg=£¨3m+2m£©aBC£®
µ±Îï¿é´Ó³¤Ä¾°åÉÏ»¬Àëʱ£¬ÓÐ L=$\frac{1}{2}{a}_{BC}{t}^{2}$-$\frac{1}{2}{a}_{A}{t}^{2}$
´ËʱÎï¿éAµÄËÙ¶ÈΪ v=aAt
¶ÔA£¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£ºB¶ÔÎï¿éA×öµÄ¹¦ W=$\frac{1}{2}m{v}^{2}$
ÁªÁ¢ÒÔÉϸ÷ʽ½âµÃ W=$\frac{10}{19}$mgL
£¨2£©ÉèÔÚÎï¿é»¬µ½³¤Ä¾·¹BµÄÖеãʱÓÃʱΪt¡ä£¬AÓëBCµÄËÙ¶È·Ö±ðΪv1ºÍv2£®
ÔòÓÐ $\frac{L}{2}$=$\frac{1}{2}{a}_{BC}t{¡ä}^{2}$-$\frac{1}{2}{a}_{A}t{¡ä}^{2}$
v1=aAt¡ä£¬v2=aBCt¡ä£®
½âµÃ v1=$\sqrt{\frac{1}{19}gL}$£¬v2=48$\sqrt{\frac{1}{19}gL}$
ÉèÎï¿éAÏà¶ÔÓÚ°åB¾²Ö¹Ê±¹²Í¬ËÙ¶ÈΪv£¬AÏà¶ÔÓÚB»¬ÐеľàÀëΪd£®
ȡˮƽÏòÓÒΪÕý·½Ïò£¬¸ù¾Ý¶¯Á¿Êغ㶨Âɵãº
mv1+3mv2=4mv
¸ù¾ÝÄÜÁ¿Êغ㶨Âɵà ¦Ìmgd=$\frac{1}{2}$mv12+$\frac{1}{2}•$3mv22-$\frac{1}{2}•$4mv2£®
ÁªÁ¢½âµÃ d£¾$\frac{L}{2}$
ËùÒÔÎï¿é»á´Ó³¤Ä¾°åÉÏ»¬Àë
´ð£º
£¨1£©³¤Ä¾°åB¶ÔÎï¿éA×öµÄ¹¦Îª$\frac{10}{19}$mgL£®
£¨2£©Îï¿é»á´Ó³¤Ä¾°åÉÏ»¬À룮
µãÆÀ ±¾ÌâµÄ¹Ø¼üÊǶÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬×¥×¡ÁÙ½ç״̬£¬×¢ÒâÕûÌå·¨ºÍ¸ôÀë·¨µÄÓ¦Óã®
| A£® | a¡¢bÊúÖ±·½Ïò¼ÓËÙ¶ÈÏàͬ | B£® | aµÄÔ˶¯Ê±¼äµÈÓÚbµÄÔ˶¯Ê±¼ä | ||
| C£® | a¡¢b¶¼×öÔȱäËÙÔ˶¯ | D£® | ÂäµØÇ°Ë²¼äa¡¢bµÄËÙ¶È·½ÏòÏàͬ |
| A£® | Ò»¶¨¾²Ö¹ | B£® | Ò»¶¨×öÔÈËÙÖ±ÏßÔ˶¯ | ||
| C£® | Êܵ½µÄºÏÍâÁ¦µÈÓÚÁã | D£® | ¿ÉÄÜ×öÔÈËÙÔ²ÖÜÔ˶¯ |
| A£® | Á¦F´óСΪ8N | B£® | ºÏÍâÁ¦¶ÔÎïÌå×ö¹¦2J | ||
| C£® | ÎïÌåÖØÁ¦ÊÆÄÜÔö¼ÓÁË6J | D£® | ÎïÌå»úеÄܼõÉÙÁË2J |