ÌâÄ¿ÄÚÈÝ
2£®°ëÔ²ÇúÃæ´¦ÓÚÊúÖ±Æ½ÃæÄÚ£¬OµãΪԲÐÄ£¬AOÔÚÍ¬Ò»Ë®Æ½ÃæÉÏ£¬Ò»Ð¡ÇòÖÊÁ¿Îªm£¬´ÓAµãÒÔ³õËÙ¶Èv0ÑØAO·½ÏòˮƽÅ׳ö£®Èçͼ£¨a£©Ëùʾ£¬Ð¡Çò¸ÕºÃÂäµ½°ëÔ²ÇúÃæµÄ×îµÍµãP£¬Ô˶¯µÄʱ¼äΪt1£¬µ½PµãʱµÄËÙ¶È´óСΪv1£»ÏÖ¸ø¸ÃСÇò´øÉϵçÁ¿q£¨q£¾0£©£¬¿Õ¼ä¼ÓÉÏˮƽÏòÓÒµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶È´óСΪE=$\frac{mg}{q}$£¬Èçͼ£¨b£©Ëùʾ£¬Ð¡Çò´ÓAµã¾²Ö¹ÊÍ·Å£¬Ô˶¯µ½PµãµÄʱÎÊΪt2£¬µ½PµãʱµÄËÙ¶È´óСΪv2£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ôò£¨¡¡¡¡£©| A£® | t1=t2 | |
| B£® | v2=2v1 | |
| C£® | v2µÄˮƽ·ÖËÙ¶È´óСµÈÓÚv0 | |
| D£® | Á½ÖÖÇé¿öСÇò¸Õµ½PµãÊ±ÖØÁ¦µÄ˲ʱ¹¦ÂÊÏàͬ |
·ÖÎö aͼÖÐСÇò×öƽÅ×Ô˶¯£¬ÔËÓÃÆ½Å×Ô˶¯µÄ¹æÂÉÇóËٶȺÍʱ¼ä£®bͼÖÐСÇò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔȱäËÙÖ±ÏßÔ˶¯µÄ¹æÂɽáºÏÇóËٶȺÍʱ¼ä£®ÔÙ¸ù¾ÝP=mgvyÇóÖØÁ¦µÄ˲ʱ¹¦ÂÊ£®
½â´ð ½â£ºA¡¢Éè°ëÔ²µÄ°ë¾¶ÎªR£®aͼÖÐСÇò×öƽÅ×Ô˶¯£¬ÊúÖ±·½Ïò×ö×ÔÓÉÂäÌåÔ˶¯£¬ÔòÓÐ R=$\frac{1}{2}g{t}_{1}^{2}$£»bͼÖÐСÇò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½ÏòÒ²×ö×ÔÓÉÂäÌåÔ˶¯£¬ÔòÓÐ R=$\frac{1}{2}g{t}_{2}^{2}$£»¿ÉµÃt1=t2£®¹ÊAÕýÈ·£®
B¡¢aͼÖУºv0=$\frac{R}{{t}_{1}}$=$\sqrt{\frac{1}{2}gR}$£¬v1=$\sqrt{{v}_{0}^{2}+£¨g{t}_{1}£©^{2}}$=$\sqrt{{v}_{0}^{2}+2gR}$=$\sqrt{\frac{5}{2}gR}$£®
bͼÖУºÐ¡ÇòµÄ¼ÓËÙ¶ÈΪ a=$\frac{{F}_{ºÏ}}{m}$=$\frac{\sqrt{2}mg}{m}$=$\sqrt{2}$g£¬v2=$\sqrt{2a•\sqrt{2R}}$=2$\sqrt{gR}$£¬Ôò $\frac{{v}_{2}}{{v}_{1}}$=$\frac{4}{3}$£¬¹ÊB´íÎó£®
C¡¢bͼÖÐСÇòˮƽ·½Ïò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËÙ¶ÈΪa=$\frac{qE}{m}$=g£¬Ôò v2µÄˮƽ·ÖËÙ¶È´óС v2x=$\sqrt{2aR}$=$\sqrt{2gR}$£¾v0£®¹ÊC´íÎó£®
D¡¢aͼÖУ¬Ð¡Çò¸Õµ½PµãÊ±ÖØÁ¦µÄ˲ʱ¹¦ÂÊ Pa=mgvy1=mg•gt1=mg$\sqrt{2gR}$
bͼÖУ¬Ð¡Çò¸Õµ½PµãÊ±ÖØÁ¦µÄ˲ʱ¹¦ÂÊ Pb=mgvy2=mg•v2cos45¡ã=mg$\sqrt{2gR}$£¬¹ÊÁ½ÖÖÇé¿öСÇò¸Õµ½PµãÊ±ÖØÁ¦µÄ˲ʱ¹¦ÂÊÏàͬ£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºAD
µãÆÀ ±¾ÌâÖÐÁ½ÖÖÇé¿öÏÂСÇòÊܵ½µÄ¶¼ÊǺãÁ¦£¬ËùÒÔ¶¼¿ÉÒÔÔËÓÃÔ˶¯µÄ·Ö½â·¨Ñо¿£¬ÒªÊìÁ·ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Ñо¿ÆäÔ˶¯¹æÂÉ£®
| A£® | Å£ | B£® | ǧ¿Ë | C£® | Ã×ÿÃë | D£® | Ã×ÿ¶þ´Î·½Ãë |
| A£® | 0 | B£® | BL2¦Ø | C£® | $\sqrt{2}$BL2¦Ø | D£® | 2BL2¦Ø |
| A£® | ÓÉͼ¿ÉÖª£¬¼××öÖ±ÏßÔ˶¯£¬ÒÒ×öÇúÏßÔ˶¯ | |
| B£® | ÔÚt1ʱ¿Ì£¬¼×µÄËÙ¶ÈΪÁ㣬ÒÒµÄËٶȲ»ÎªÁã | |
| C£® | ÔÚt2ʱ¿Ì£¬¼×¡¢ÒÒÁ½Í¬Ñ§ÏàÓö | |
| D£® | ÔÚt3ʱ¿Ì£¬ÒÒµÄËÙ¶ÈΪÁã¡¢¼ÓËٶȲ»ÎªÁã |