ÌâÄ¿ÄÚÈÝ

17£®Ä³Í¬Ñ§×¼±¸ÀûÓÃÏÂÁÐÆ÷²Ä²âÁ¿¸Éµç³ØµÄµç¶¯ÊƺÍÄÚµç×裮
A£®´ý²â¸Éµç³ØÁ½½Ú£¬Ã¿½Úµç³Øµç¶¯ÊÆÔ¼Îª1.5V£¬ÄÚ×èÔ¼¼¸Å·Ä·
B£®Ö±Á÷µçѹ±íV1¡¢V2£¬Á¿³Ì¾ùΪ3V£¬ÄÚ×èºÜ´ó
C£®¶¨Öµµç×èR0δ֪
D£®»¬¶¯±ä×èÆ÷R£¬×î´ó×èÖµRm
E£®µ¼ÏߺͿª¹Ø

¢Ù¸ù¾ÝÈçͼ¼×ËùʾµÄʵÎïÁ¬½Óͼ£¬ÔÚͼÒÒ·½¿òÖл­³öÏàÓ¦µÄʵÑéÔ­Àíͼ
¢ÚʵÑé֮ǰ£¬ÐèÒªÀûÓøõç·ͼ²â³ö¶¨Öµµç×èR0£¬·½·¨ÊÇÏȰѻ¬¶¯±ä×èÆ÷Rµ÷µ½×î´ó×èÖµRm£¬ÔٱպϿª¹Ø£¬µçѹ±íV1ºÍV2µÄ¶ÁÊý·Ö±ðΪU10¡¢U20£¬ÔòR0=$\frac{{U}_{20}-{U}_{10}}{{U}_{10}}{R}_{m}$£¨ÓÃU10¡¢U20¡¢Rm±íʾ£©
¢ÛʵÑéÖÐÒÆ¶¯»¬¶¯±ä×èÆ÷´¥Í·£¬¶Á³öµçѹ±íV1ºÍV2µÄ¶à×éÊý¾ÝU1¡¢U2£¬Ãè»æ³öU1-U2ͼÏóÈçͼ±ûËùʾ£¬Í¼ÖÐÖ±ÏßбÂÊΪk£¬ÓëºáÖáµÄ½Ø¾àΪa£¬ÔòÁ½½Ú¸Éµç³ØµÄ×Üµç¶¯ÊÆE=$\frac{2-k}{k-1}a$£¬×ÜÄÚ×èr=$\frac{{R}_{0}}{k-1}$£¨ÓÃk¡¢a¡¢R0±íʾ£©£®

·ÖÎö £¨1£©ÓÉʵÎïͼ¿ÉÖªµç·µÄÁ¬½Ó·½·¨µÃ³ö¶ÔÓ¦µÄÔ­Àíͼ£»
£¨2£©¸ù¾ÝʵÑéÔ­Àí½áºÏÅ·Ä·¶¨ÂÉ¿ÉÇóµÃ¶¨Öµµç×èµÄ×èÖµ£»
£¨3£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨Âɼ°Í¼ÏóµÄÐÔÖʿɵóö¶ÔÓ¦µÄµç¶¯ÊƺÍÄÚµç×裮

½â´ð ½â£º£¨1£©ÓÉʵÎïͼ¿ÉÖªµç·µÄÁ¬½Ó·½Ê½£¬µÃ³öµÄʵÎïͼÈçͼËùʾ£»
£¨2£©ÓÉͼ¿ÉÖª£¬V2²âÁ¿R0ÓëRÁ½¶ËµÄµçѹ£¬V1²âÁ¿RÁ½¶ËµÄµçѹ£¬ÔòR0Á½¶ËµÄµçѹU20-U10£»
ÓÉÅ·Ä·¶¨ÂÉ¿ÉÖª£¬R0=$\frac{{U}_{20}-{U}_{10}}{\frac{{U}_{10}}{{R}_{m}}}$=$\frac{{U}_{20}-{U}_{10}}{{U}_{10}}{R}_{m}$£»
£¨2£©Óɱպϵç·ŷķ¶¨ÂÉ¿ÉÖª£¬E=U2+$\frac{{U}_{1}-{U}_{2}}{{R}_{0}}r$
±äÐεãº
U1=$\frac{{r-R}_{0}}{r}{U}_{2}$+$\frac{{R}_{0}E}{r}$
$\frac{{r-R}_{0}}{r}a$+$\frac{{R}_{0}E}{r}$
ÔòÓУºr-R0=R0E£»
$\frac{{r-R}_{0}}{r}$=k
½âµÃ£º
E=$\frac{2-k}{k-1}a$
 $r=\frac{R_0}{£¨k-1£©}$
¹Ê´ð°¸Îª£º£¨1£©ÈçͼËùʾ£»£¨2£©$\frac{2-k}{k-1}a$£»$\frac{{R}_{0}}{k-1}$

µãÆÀ ±¾Ì⿼²é²âÁ¿µç¶¯ÊƺÍÄÚµç×èµÄʵÑé·½·¨£¬¹Ø¼üÔÚÃ÷È·¸ù¾Ý±ÕºÏµç·ŷķ¶¨Âɵóö¶ÔÓ¦µÄ±í´ïʽ£¬ÔÙ·ÖÎöͼÏóµÄÒâÒ壬ÇóµÃµç¶¯ÊƺÍÄÚµç×裮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø