ÌâÄ¿ÄÚÈÝ
19£®£¨1£©µç³¡Ç¿¶ÈEµÄ´óС£»
£¨2£©´øµçÁ£×Ó¾¹ýPµãʱËÙ¶ÈvµÄ´óСºÍ·½Ïò£»
£¨3£©´øµçÁ£×Ó´ÓCDÑÓ³¤ÏßÉÏÀ뿪µç³¡µÄËٶȼ°À뿪µãµ½DµãµÄ¾àÀ룮
·ÖÎö £¨1£©´øµçÁ£×Ó½øÈëµç³¡×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½Ïò×ö³õËÙ¶ÈΪ0µÄÔȼÓËÙÖ±ÏßÔ˶¯£¬µ½´ïPµãºó£¬Ë®Æ½Î»ÒÆÊÇÊúÖ±Î»ÒÆµÄ2±¶£¬×¥×¡ÕâÒ»¹ØÏµ£¬Çó³öµç³¡Ç¿¶ÈµÄ´óС£®
£¨2£©Óɶ¯Äܶ¨Àí£¬´úÈëÇó³öµÄµç³¡Ç¿¶È£¬¼´¿ÉµÃ³öv0ÓëvyµÄ¹ØÏµ£¬´Ó¶øÇó³ö¾¹ýPµãµÄËÙ¶È´óСºÍ·½Ïò£®
£¨3£©´øµçÁ£×Ó½øÈëÓÒ²àµç³¡Ê±×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Óɼ¸ºÎ¹ØÏµÇó½âÀ뿪µãµ½DµãµÄ¾àÀ룬Óɶ¯Äܶ¨ÀíÇó½âÀ뿪µç³¡µÄËÙ¶È£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬Ôò
ˮƽ·½Ïò£ºL=v0t
ÊúÖ±·½Ïò£º$\frac{L}{2}$=$\frac{1}{2}a{t}^{2}$
ÓÖ a=$\frac{qE}{m}$
ÁªÁ¢½âµÃ£ºE=$\frac{m{v}_{0}^{2}}{qL}$
£¨2£©ÔÚÊúÖ±·½ÏòÁ£×Ó×öÔȱäËÙÔ˶¯£¬¾¹ýPµãʱ£¬ÊúÖ±·ÖËÙ¶ÈΪvy£¬ÔòÓÐ
vy=at
´úÈëµÃ£ºvy=v0
PµãµÄËÙ¶ÈΪ v=$\sqrt{2}{v}_{0}$
ËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ¦È=45¡ã
£¨3£©´øµçÁ£×Ó½øÈëÓÒ²àµç³¡ºó×öÔȼÓËÙÖ±ÏßÔ˶¯£¬À뿪´Ëµç³¡Ê±Ô˶¯µÄÎ»ÒÆÎª£º
S=$\frac{\sqrt{2}}{2}$L
Óɶ¯Äܶ¨ÀíµÃ£ºqE$•\frac{\sqrt{2}}{2}$L=$\frac{1}{2}mv{¡ä}^{2}$-$\frac{1}{2}m{v}^{2}$
ÁªÁ¢½âµÃ£ºv¡ä=$\sqrt{2+\sqrt{2}}{v}_{0}$
Óɼ¸ºÎ¹ØÏµµÃ£ºÀ뿪µãµ½DµãµÄ¾àÀëΪL£®
´ð£º£¨1£©µç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{m{v}_{0}^{2}}{qL}$£»
£¨2£©´øµçÁ£×Ó¾¹ýPµãʱËÙ¶ÈvµÄ´óСΪ$\sqrt{2}{v}_{0}$£¬ËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ45¡ãбÏòÓÒÏ·½£»
£¨3£©´øµçÁ£×Ó´ÓCDÑÓ³¤ÏßÉÏÀ뿪µç³¡µÄËÙ¶ÈΪ$\sqrt{2+\sqrt{2}}{v}_{0}$£¬À뿪µãµ½DµãµÄ¾àÀëΪL£®
µãÆÀ ±¾ÌâÖØµã¿¼²é´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖеÄÀàÆ½Å×Ô˶¯£¬ÒªÊìÁ·ÔËÓÃÔ˶¯µÄ·Ö½â·¨ºÍ¶¯Äܶ¨Àí£¬ÒªÓÐÔËÓÃÊýѧ֪ʶ½â¾öÎïÀíÎÊÌâµÄÄÜÁ¦£®
| A£® | ÓÉÂÝ˿ñÊܵÄĦ²ÁÁ¦À´ÌṩÆä×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ | |
| B£® | ÂÝ˿ñÊܵ½¸ËµÄµ¯Á¦·½ÏòˮƽÏòÍ⣬±³ÀëÔ²ÐÄ | |
| C£® | ´ËʱÊÖת¶¯ËÜÁϹܵĽÇËٶȦØ=$\sqrt{\frac{g}{¦Ìr}}$ | |
| D£® | Èô¸ËµÄת¶¯¼Ó¿ìÔòÂÝ˿ñÓпÉÄÜÏà¶Ô¸Ë·¢ÉúÔ˶¯ |
| A£® | ËÙ¶È | B£® | ¼ÓËÙ¶È | C£® | ËÙÂÊ | D£® | Ëٶȱ仯Á¿ |