ÌâÄ¿ÄÚÈÝ
19£®2013Äê12ÔÂ2ÈÕ1ʱ30·Ö£¬¡°æÏ¶ðÈýºÅ¡±ÔÂÇò̽²âÆ÷´îÔØ³¤Õ÷ÈýºÅÒÒ»ð¼ý·¢ÉäÉý¿Õ£®¸ÃÎÀÐÇÔÚ¾àÔÂÇò±íÃæ¸ß¶ÈΪhµÄ¹ìµÀÉÏ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÆäÔËÐеÄÖÜÆÚΪT£¬×îÖÕÔÚÔÂÇò±íÃæÊµÏÖÈí׎£®ÈôÒÔR±íʾÔÂÇòµÄ°ë¾¶£¬ÒýÁ¦³£Á¿ÎªG£¬ºöÂÔÔÂÇò×Ôת¼°µØÇò¶ÔÎÀÐǵÄÓ°Ï죬ÏÂÁÐ˵·¨²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ÔÂÇòµÄÖÊÁ¿Îª$\frac{{4{¦Ð^2}{{£¨{R+h}£©}^3}}}{{G{T^2}}}$ | |
| B£® | ÔÂÇòµÄµÚÒ»ÓîÖæËÙ¶ÈΪ$\frac{2¦Ð}{T}\sqrt{\frac{{{{£¨R+h£©}^3}}}{R}}$ | |
| C£® | ¡°æÏ¶ðÈýºÅ¡±ÈÆÔÂÔËÐÐʱµÄÏòÐļÓËÙ¶ÈΪ$\frac{{4{¦Ð^2}R}}{T^2}$ | |
| D£® | ÎïÌåÔÚÔÂÇò±íÃæ×ÔÓÉÏÂÂäµÄ¼ÓËÙ¶È´óСΪ$\frac{{4{¦Ð^2}{{£¨R+h£©}^3}}}{{{R^2}{T^2}}}$ |
·ÖÎö ÍòÓÐÒýÁ¦ÌṩæÏ¶ðÈýºÅ×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬Ó¦ÓÃÍòÓÐÒýÁ¦¹«Ê½ÓëÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öµÚÒ»ÓîÖæËÙ¶È¡¢ÏòÐļÓËÙ¶È¡¢ÖØÁ¦¼ÓËٶȵȣ¬È»ºó·ÖÎö´ðÌ⣮
½â´ð ½â£ºA¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{£¨R+h£©^{2}}$=m$£¨\frac{2¦Ð}{T}£©^{2}$£¨R+h£©£¬½âµÃ£¬ÔÂÇòÖÊÁ¿£ºM=$\frac{4{¦Ð}^{2}£¨R+h£©^{3}}{G{T}^{2}}$£¬¹ÊAÕýÈ·£»
B¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{{R}^{2}}$=m$\frac{{v}^{2}}{R}$£¬½âµÃ£¬ÔÂÇòµÄµÚÒ»ÓîÖæËÙ¶È£ºv=$\frac{2¦Ð}{T}$$\sqrt{\frac{£¨R+h£©^{3}}{R}}$£¬¹ÊBÕýÈ·£»
C¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{£¨R+h£©^{2}}$=ma£¬½âµÃ£¬æÏ¶ðÈýºÅµÄÏòÐļÓËÙ¶È£ºa=$\frac{4{¦Ð}^{2}£¨R+h£©}{{T}^{2}}$£¬¹ÊC²»ÕýÈ·£»
D¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{{R}^{2}}$=mg£¬½âµÃ£¬ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶È£ºg=$\frac{4{¦Ð}^{2}£¨R+h£©^{3}}{{R}^{2}{T}^{2}}$£¬¹ÊDÕýÈ·£»
±¾ÌâÑ¡²»ÕýÈ·µÄ£¬¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÒªÖªµÀ¡°æÏ¶ðÈýºÅ¡±ÈÆÔÂÇò×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÍòÓÐÒýÁ¦Ìṩ£¬²¢ÇÒÒªÄܹ»¸ù¾ÝÌâÄ¿µÄÒªÇóÑ¡ÔñÇ¡µ±µÄÏòÐÄÁ¦µÄ±í´ïʽ£®
| A£® | µ¯»É¶Ôľ¿é×öµÄ¹¦Îª0 | |
| B£® | µ¯»É¶Ôľ¿é³åÁ¿µÄ´óСΪ0 | |
| C£® | ×Óµ¯Óëľ¿é×é³ÉµÄϵͳ¶¯Á¿Êغã | |
| D£® | Õû¸ö¹ý³ÌÖÐËðʧµÄ»úеÄÜΪ$\frac{Mm}{2£¨M+m£©}$${v}_{0}^{2}$ |
| A£® | ·Ö×ÓµÄÖÊÁ¿ÊÇ$\frac{M}{{N}_{A}}$ | |
| B£® | µ¥Î»Ìå»ýÄÚ·Ö×ӵĸöÊýÊÇ$\frac{¦Ñ{N}_{A}}{M}$ | |
| C£® | ·Ö×ÓµÄÌå»ýÒ»¶¨ÊÇ$\frac{M}{¦Ñ{N}_{A}}$ | |
| D£® | ÖÊÁ¿ÎªmµÄ¸ÃÎïÖÊËùº¬ÓеķÖ×ÓÊýΪ$\frac{m{N}_{A}}{M}$ |