ÌâÄ¿ÄÚÈÝ
20£®£¨1£©ÈôABϸÏßˮƽÇÒÀÁ¦µÈÓÚÖØÁ¦µÄÒ»°ë£¬Çó´ËʱװÖÃÔÈËÙת¶¯µÄ½ÇËٶȦØ1µÄ´óС£»
£¨2£©ÈôҪʹABϸÏßÉϵÄÀÁ¦ÎªÁ㣬Çó×°ÖÃÔÈËÙת¶¯µÄ½ÇËٶȦصÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¶ÔСÇò½øÐÐÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ¼´¿ÉÇó½â£»
£¨2£©µ±Ï¸ÏßABÕÅÁ¦ÎªÁãʱ£¬Éþ×ÓACÀÁ¦ºÍÖØÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö½ÇËٶȵķ¶Î§£®
½â´ð
½â£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
Tcos¦È=mg£¬
Tsin¦È-${T}_{AB}=m{{¦Ø}_{1}}^{2}lsin¦È$
½âµÃ£º${¦Ø}_{1}=\sqrt{\frac{5g}{12l}}$
£¨2£©ÓÉÌâÒ⣬µ±¦Ø×îСʱ£¬ÉþACÓëÊúÖ±·½ÏòµÄ¼Ð½Ç¦Á=37¡ã£¬ÊÜÁ¦·ÖÎö£¬Èçͼ£¬ÔòÓÐ
$mgtan¦Á=m£¨lsin¦Á£©{{¦Ø}_{min}}^{2}$
½âµÃ£º${¦Ø}_{min}=\sqrt{\frac{5g}{4l}}$
ϸÏßABÇ¡ºÃÊúÖ±£¬µ«ÕÅÁ¦ÎªÁãʱ£¬¦Ø×î´ó£¬ÉèϸÏßACÓëÊúÖ±·½ÏòµÄ¼Ð½ÇΪ¦Â£®
Óɼ¸ºÎ¹ØÏµµÃ£º$cos¦Â=\frac{3}{5}$£¬µÃ¦Â=53¡ã£¬Ôò
$mgtan¦Â=m£¨lsin¦Â£©{{¦Ø}_{max}}^{2}$
½âµÃ£º${¦Ø}_{max}=\sqrt{\frac{5g}{3l}}$£¬
ËùÒԦصÄȡֵ·¶Î§Îª$\sqrt{\frac{5g}{4l}}¡Ü¦Ø¡Ü\sqrt{\frac{5g}{3l}}$£®
´ð£º£¨1£©ÈôABϸÏßˮƽÇÒÀÁ¦µÈÓÚÖØÁ¦µÄÒ»°ë£¬Çó´ËʱװÖÃÔÈËÙת¶¯µÄ½ÇËٶȦØ1µÄ´óСΪ$\sqrt{\frac{5g}{12l}}$£»
£¨2£©ÈôˣʹABϸÏßÉϵÄÀÁ¦ÎªÁ㣬װÖÃÔÈËÙת¶¯µÄ½ÇËٶȦصÄȡֵ·¶Î§Îª$\sqrt{\frac{5g}{4l}}¡Ü¦Ø¡Ü\sqrt{\frac{5g}{3l}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåСÇò×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦À´Ô´£¬È·¶¨Ð¡ÇòÔ˶¯¹ý³ÌÖеÄÁÙ½ç״̬£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£®
| A£® | ÖØÁ¦¶Ôm²»×ö¹¦ | B£® | M¶ÔmµÄÖ§³ÖÁ¦¶Ôm×ö¸º¹¦ | ||
| C£® | M¶ÔmµÄĦ²ÁÁ¦¶Ôm×öÕý¹¦ | D£® | mËùÊܵĺÏÍâÁ¦¶Ôm×ö¸º¹¦ |
| A£® | µç³¡ÏßÊÇ´ÓaÖ¸Ïòb£¬ËùÒÔÓÐEa£¾Eb | |
| B£® | a¡¢bÁ½µãµÄ³¡Ç¿·½ÏòÏàͬ | |
| C£® | ²»ÂÛºÎÖÖµçºÉ²úÉúµÄµç³¡£¬Ò»¶¨ÓЦµA£¾¦µB | |
| D£® | Èô´Ëµç³¡ÊÇÓÉÒ»ÕýµãµçºÉËù²úÉúµÄ£¬ÔòÓÐEa£¾Eb |
| A£® | Va£¾Vb | B£® | Va=Vb | ||
| C£® | Va£¼Vb | D£® | Ìõ¼þ²»×ãÎÞ·¨ÅÐ¶Ï |
| A£® | ÈôR×èÖµ²»±ä£¬µ±K·Ö±ð½Ó1ºÍ2ʱ£¬µçѹ±í¶ÁÊýÖ®±ÈΪ2£º1 | |
| B£® | ÈôR×èÖµ²»±ä£¬µ±K·Ö±ð½Ó1ºÍ2ʱ£¬µçѹ±í¶ÁÊýÖ®±ÈΪ4£º1 | |
| C£® | ÈôK·Ö±ð½Ó1ºÍ2ʱ£¬RÏûºÄ¹¦ÂÊÏàµÈ£¬ÔòR×èÖµÖ®±ÈΪ2£º1 | |
| D£® | ÈôK·Ö±ð½Ó1ºÍ2ʱ£¬RÏûºÄ¹¦ÂÊÏàµÈ£¬ÔòR×èÖµÖ®±ÈΪ4£º1 |