ÌâÄ¿ÄÚÈÝ
19£®£¨1£©Á£×ÓÓÉPµãµ½QµãÔ˶¯µÄʱ¼ä£»
£¨2£©ÔÚxoyÆ½ÃæÄڵij¤·½Ðδų¡ÇøÓòµÄ×îÐ¡Ãæ»ý£®
·ÖÎö £¨1£©Î¢Á£´ÓPµãµ½QµãµÄÔ˶¯¹ý³ÌÖÐ×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬ÓÉËٶȹ«Ê½Çó½âʱ¼ä£®
£¨2£©ÓÉËٶȵķֽâÇó³ö΢Á£½øÈë´Å³¡Ê±ËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½Ç£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö´Å³¡Öй켣°ë¾¶£¬¼´¿ÉÇóµÃ³¤·½Ðδų¡ÇøÓòµÄ³¤ºÍ¿í£¬´Ó¶øÇó³öÃæ»ý£®
½â´ð
½â£º£¨1£©Î¢Á£ÓÉPµãµ½µãµÄÔ˶¯¹ý³ÌÖУ¬ÔÚy·½ÏòÔ˶¯Å£¶ÙµÚ¶þ¶¨ÂÉÓУº
qE=ma
ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄËٶȹ«Ê½ÓУº$\sqrt{£¨2{v}_{0}£©^{2}-{v}_{0}^{2}}$=at
½âµÃ t=$\frac{\sqrt{3}m{v}_{0}}{qE}$
£¨2£©ÈçͼËùʾ£¬ÓÐ cos¦È=$\frac{{v}_{0}}{2{v}_{0}}$=$\frac{1}{2}$£¬¦È=60¡ã
Óɼ¸ºÎ¹ØÏµ¿ÉµÃ³¤¶ÈÐδų¡ÇøÓòµÄ×îС³¤¶ÈºÍ¿í¶È·Ö±ðΪ£ºR+Rsin¦È¡¢R£¬ËùÒԴų¡ÇøÓòµÄ×îÐ¡Ãæ»ýΪ
Smin=£¨R+Rsin¦È£©R=$\frac{2+\sqrt{3}}{2}{R}^{2}$
´ð£º
£¨1£©Á£×ÓÓÉPµãµ½QµãÔ˶¯µÄʱ¼äΪ$\frac{\sqrt{3}m{v}_{0}}{qE}$£»
£¨2£©ÔÚxoyÆ½ÃæÄڵij¤·½Ðδų¡ÇøÓòµÄ×îÐ¡Ãæ»ýΪ$\frac{2+\sqrt{3}}{2}{R}^{2}$£®
µãÆÀ ÕÆÎÕÆ½Å×Ô˶¯µÄ´¦Àí·½·¨²¢ÄÜÔËÓõ½ÀàÆ½Å×Ô˶¯ÖУ¬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÄÜÕýÈ·µÄ»³öÔ˶¯¹ì¼££¬²¢¸ù¾Ý¼¸ºÎ¹ØÏµÈ·¶¨¸÷Á¿Ö®¼äµÄ¹ØÏµ£®
| A£® | ¸ËµÄËÙ¶È×î´óֵΪ$\frac{FR}{{{B^2}{l^2}}}$ | |
| B£® | µç×èRÏûºÄµÄµçÄÜΪ$\frac{FlR}{R+r}$ | |
| C£® | ºãÁ¦F×ö¹¦µÄ×î´ó¹¦ÂÊÊÇ$\frac{{{F^2}£¨R+r£©}}{{{B^2}{l^2}}}$ | |
| D£® | ºãÁ¦F×öµÄ¹¦Óë°²±¶Á¦×öµÄ¹¦Ö®ºÍ´óÓڸ˶¯Äܵı仯Á¿ |
| A£® | ÔÈËÙÖ±ÏßÔ˶¯ | B£® | ÔȼõËÙÉÏÉýÔ˶¯ | C£® | ÔȼÓËÙÉÏÉýÔ˶¯ | D£® | ÔȼÓËÙϽµÔ˶¯ |
| A£® | °ÑС´ÅÕë·ÅÔÚµ¼ÏßµÄÑÓ³¤ÏßÉÏ£¬Í¨µçºó£¬Ð¡´ÅÕë»áת¶¯ | |
| B£® | °ÑС´ÅÕëÆ½ÐеطÅÔÚµ¼ÏßµÄÏ·½£¬ÔÚµ¼ÏßÓëС´ÅÕëÖ®¼ä·ÅÖÃÒ»¿éÂÁ°å£¬Í¨µçºó£¬Ð¡´ÅÕë²»»áת¶¯ | |
| C£® | °ÑС´ÅÕëÆ½ÐеطÅÔÚµ¼ÏßµÄÏ·½£¬¸øµ¼ÏßͨÒԺ㶨µçÁ÷£¬È»ºóÖð½¥Ôö´óµ¼ÏßÓëС´ÅÕëÖ®¼äµÄ¾àÀ룬С´ÅÕëת¶¯µÄ½Ç¶È£¨ÓëͨµçǰÏà±È£©»áÖð½¥¼õС | |
| D£® | °Ñ»ÆÍÕ루ÓûÆÍÖÆ³ÉµÄÖ¸Õ룩ƽÐеطÅÔÚµ¼ÏßµÄÏ·½£¬Í¨µçºó£¬»ÆÍÕë»áת¶¯ |
| A£® | ÖʵãM¶ÔƽºâλÖõÄÎ»ÒÆÎª¸ºÖµ | |
| B£® | ÖʵãMµÄ¼ÓËÙ¶È·½ÏòÓëËÙ¶È·½ÏòÏàͬ | |
| C£® | ÖʵãMµÄ¼ÓËÙ¶È·½ÏòΪ¸º | |
| D£® | ÖʵãMµÄËÙ¶È·½ÏòΪÕý |
| A£® | ºì¹â×îÏÈÏûʧ£¬×Ϲâ×îºóÏûʧ | B£® | ×Ϲâ×îÏÈÏûʧ£¬ºì¹â×îºóÏûʧ | ||
| C£® | ×Ϲâ×îÏÈÏûʧ£¬»Æ¹â×îºóÏûʧ | D£® | ºì¹â×îÏÈÏûʧ£¬»Æ¹â×îºóÏûʧ |