ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÎïÌåAÏòÏÂÔ˶¯¸Õµ½´ïBµãʱËٶȵĴóС£»
£¨2£©µ¯»ÉµÄ×î´óѹËõÁ¿x£»
£¨3£©µ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜ £¨´ËСÌâ´ð°¸Öпɱ£Áôx£»µ¯»É¾¢¶ÈϵÊýδ֪£©£®
·ÖÎö £¨1£©¶Ô´Ó×î¸ßµãµ½µÚÒ»´ÎÓ뵯»É½Ó´¥¹ý³ÌÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â¼´¿É£»
£¨2£©¶Ô´ÓµÚÒ»´Î½Ó´¥µ¯»Éµ½µÚ¶þ´Î½Ó´¥µ¯»É¹ý³ÌÖ±½ÓÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â£»
£¨3£©ÓÉAµã¿ªÊ¼µ½µ¯»ÉѹËõ×î¶ÌµÄ¹ý³Ì£¬¶ÔÎïÌåÔËÓö¯Äܶ¨Àí¼´¿ÉÇó³öµ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜ£®
½â´ð ½â£º£¨1£©ÎïÌåÓÉAµã¿ªÊ¼¸ÕºÃµ½BµãµÄÔ˶¯¹ý³Ì£¬Ö»ÓÐÖØÁ¦¶ÔÎïÌå×ö¹¦£¬
¸ù¾Ý¶¯Äܶ¨Àí¿ÉµÃ£ºmgLsin¦È=$\frac{1}{2}$mvB2-$\frac{1}{2}$mv02
Óɴ˿ɵÃÎïÌ廬µ½BµãµÄËÙ¶È£ºvB=$\sqrt{2gLsin¦È{+v}_{0}^{2}}$
£¨2£©É赯»É×î´óѹËõÁ¿Îªx£¬ÔÚÎïÌå¸ÕºÃ½Ó´¥µ¯»ÉÖÁÇ¡ºÃ·µ»Øµ½BµãµÄ¹ý³ÌÖУ¬
Óɶ¯Äܶ¨ÀíµÃ£º-2¦Ìmgxcos¦È=0-$\frac{1}{2}$mvB2
¿ÉµÃµ¯»ÉµÄ×î´óѹËõÁ¿£ºx=$\frac{2gLsin¦È{+v}_{0}^{2}}{4¦Ìgcos¦È}$
£¨3£©ÎïÌåÓÉAµã¿ªÊ¼µ½µ¯»ÉѹËõ×î¶ÌµÄ¹ý³Ì£¬
¸ù¾Ý¶¯Äܶ¨Àí¿ÉµÃ£ºmg£¨L+x£©sin¦È-EPm-¦Ìmgxcos¦È=0-$\frac{1}{2}m{v}_{0}^{2}$
½âµÃ£ºEPm=mg£¨L+x£©sin¦È+$\frac{1}{2}m{v}_{0}^{2}$-¦Ìmgxcos¦È
´ð£º£¨1£©ÎïÌåAÏòÏÂÔ˶¯¸Õµ½´ïBµãʱËٶȵĴóСΪ$\sqrt{2gLsin¦È{+v}_{0}^{2}}$£»
£¨2£©µ¯»ÉµÄ×î´óѹËõÁ¿xΪ$\frac{2gLsin¦È{+v}_{0}^{2}}{4¦Ìgcos¦È}$£»
£¨3£©µ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜΪmg£¨L+x£©sin¦È+$\frac{1}{2}m{v}_{0}^{2}$-¦Ìmgxcos¦È£®
µãÆÀ ±¾Ì⿼²é¶¯Äܶ¨ÀíµÄ×ÛºÏÔËÓ㬽âÌâ¹Ø¼üÊÇÒªÁé»îµØÑ¡ÔñÎïÀí¹ý³ÌÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â£¬Í¬Ê±ÒªÃ÷È·µ¯»Éµ¯Á¦×öµÄ¹¦µÈÓÚµ¯ÐÔÊÆÄܵı仯£®
| A£® | Ô˶¯µÄÎïÌ嶯Äܲ»±ä£¬¸ÃÎïÌåËùÊܵĺÏÍâÁ¦±Ø¶¨ÎªÁã | |
| B£® | Ô˶¯µÄÎïÌ嶯Äܲ»±ä£¬¸ÃÎïÌåËùÊܵĺÏÍâÁ¦Ò»¶¨²»ÎªÁã | |
| C£® | ÎïÌå×ö±äËÙÔ˶¯£¬Æä¶¯Äܱر仯 | |
| D£® | ÎïÌå×ö±äËÙÔ˶¯£¬Æä¶¯ÄÜ¿ÉÄܲ»±ä |
| A£® | ·ÉÐÐÔ±ÒÔ·É»úΪ²Î¿¼Ïµ | B£® | ·ÉÐÐÔ±ÒÔµØÃæÎª²Î¿¼Ïµ | ||
| C£® | СÃ÷ÒÔµØÃæÎª²Î¿¼Ïµ | D£® | СÃ÷ÒÔ·É»úΪ²Î¿¼Ïµ |
| A£® | ÊÍ·Å˲¼ä½ðÊô°ôµÄ¼ÓËÙ¶ÈСÓÚÖØÁ¦¼ÓËÙ¶Èg | |
| B£® | ½ðÊô°ôÏòϵÄ×î´óËÙ¶ÈΪvʱ£¬ËùÊܵ¯»Éµ¯Á¦ÎªF=mg-$\frac{{B}^{2}{L}^{2}v}{R}$ | |
| C£® | ½ðÊô°ôÏòÏÂÔ˶¯Ê±£¬Á÷¹ýµç×èRµÄµçÁ÷·½ÏòΪa¡úb | |
| D£® | µç·ÖвúÉúµÄ×ÜÈÈÁ¿µÈÓÚ½ðÊô°ôÖØÁ¦ÊÆÄܵļõÉÙÁ¿ |