ÌâÄ¿ÄÚÈÝ
20£®Ðí¶àÇé¿öϹâÊÇÓÉÔ×ÓÄÚ²¿µç×ÓµÄÔ˶¯²úÉúµÄ£¬Òò´Ë¹âÆ×Ñо¿ÊÇ̽Ë÷Ô×ӽṹµÄÒ»ÌõÖØÒªÍ¾¾¶£®ÀûÓÃÇâÆø·Åµç¹Ü¿ÉÒÔ»ñµÃÇâÔ×Ó¹âÆ×£¬¸ù¾Ý²£¶ûÀíÂÛ¿ÉÒԺܺõؽâÊÍÇâÔ×Ó¹âÆ×µÄ²úÉú»úÀí£®ÒÑÖªÇâÔ×ӵĻù̬ÄÜÁ¿ÎªE1£¬¼¤·¢Ì¬ÄÜÁ¿ÎªEn=$\frac{E_1}{n^2}$£¬ÆäÖÐn=2£¬3£¬4¡£®1885Ä꣬°Í¶ûÄ©¶Ôµ±Ê±ÒÑÖªµÄÔڿɼû¹âÇøµÄËÄÌõÆ×Ïß×öÁË·ÖÎö£¬·¢ÏÖÕâЩÆ×ÏߵIJ¨³¤Äܹ»ÓÃÒ»¸ö¹«Ê½±íʾ£¬Õâ¸ö¹«Ê½Ð´×ö$\frac{1}{¦Ë}=R£¨\frac{1}{2^2}-\frac{1}{n^2}£©$£¬n=3£¬4£¬5£¬¡£®Ê½ÖÐR½Ð×öÀïµÂ²®³£Á¿£¬Õâ¸ö¹«Ê½³ÆÎª°Í¶ûÄ©¹«Ê½£®ÓÃh±íʾÆÕÀʿ˳£Á¿£¬c±íÊ¾Õæ¿ÕÖеĹâËÙ£¬ÔòÀïµÂ²®³£Á¿R¿ÉÒÔ±íʾΪ£¨¡¡¡¡£©| A£® | -$\frac{E_1}{2hc}$ | B£® | $\frac{E_1}{2hc}$ | C£® | -$\frac{E_1}{hc}$ | D£® | $\frac{E_1}{hc}$ |
·ÖÎö ´Ó¸ßÄܼ¶ÏòµÍÄܼ¶Ô¾Ç¨£¬·øÉä¹â×Ó£¬·øÉäµÄ¹â×ÓÄÜÁ¿µÈÓÚÁ½Äܼ¶¼äµÄÄܼ¶²î£¬½áºÏ$\frac{1}{¦Ë}=R£¨\frac{1}{2^2}-\frac{1}{n^2}£©$£¬n=3£¬4£¬5£¬¡Çó³öÀïµÂ²®³£Á¿£®
½â´ð ½â£ºÈôn£¾m£¬ÓÉn¡úmԾǨ£¬ÊͷŹâ×Ó£¬Ôò$\frac{{E}_{1}}{{n}^{2}}-\frac{{E}_{1}}{{m}^{2}}=hv$£¬
ÒòΪ$v=\frac{c}{¦Ë}$£¬Ôò${E}_{1}£¨\frac{1}{{n}^{2}}-\frac{1}{{m}^{2}}£©=h\frac{c}{¦Ë}$£¬
ÓÉ$h\frac{c}{¦Ë}$=hcR£¨$\frac{1}{{2}^{2}}-\frac{1}{{n}^{2}}$£©£¬µÃ-E1=hcR£¬
½âµÃÀïµÂ²®³£Á¿R=$-\frac{{E}_{1}}{hc}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ·øÉä»òÎüÊյĹâ×ÓÄÜÁ¿µÈÓÚÁ½Äܼ¶¼äµÄÄܼ¶²î£¬ÖªµÀ¹â×ÓÆµÂÊÓ벨³¤µÄ¹ØÏµ£¬²¢ÄÜÁé»îÔËÓã¬ÄѶȲ»´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®
ÈçͼËùʾ¿Õ¼äÖÐÓÐÒ»×ã¹»³¤µÄˮƽ¾øÔµ°åMN£¬ÔÚ°åµÄÕýÉÏ·½Óд¹Ö±ÓÚÖ½ÃæÏòÀïµÄ´Å¸ÐӦǿ¶È´óСΪBµÄÔÈÇ¿´Å³¡£¬ÏÖÓÐÒ»¸öÖÊÁ¿Îªm£¬´øµçÁ¿ÎªqµÄ´øÕýµçµÄÁ£×ÓÒÔËÙ¶Èv´Ó°åÉϵÄEµãÊúÖ±ÏòÉϽøÈë´Å³¡£¬Á£×Óÿ´Î´òµ½°åÉϺóËÙ¶È·½ÏòÓëÔ·½ÏòÏà·´£¬ËÙ¶È´óС±äΪÔÀ´µÄÒ»°ë£¬´øµçÁ£×ӵĵçÁ¿²»±ä£¬Á£×Ó³ö·¢ºóµÚ¶þ´ÎÓëµ²°åÅöײ¾ÀúµÄʱ¼äºÍ¾à³ö·¢µãµÄ¾àÀë·Ö±ðΪ£¨²»¼ÆÁ£×ÓÊܵ½µÄÖØÁ¦£©£¨¡¡¡¡£©
| A£® | $\frac{2¦Ðm}{qB}$£¬$\frac{4mv}{qB}$ | B£® | $\frac{2¦Ðm}{qB}$£¬$\frac{3mv}{qB}$ | C£® | $\frac{3¦Ðm}{2qB}$£¬$\frac{4mv}{qB}$ | D£® | $\frac{3¦Ðm}{2qB}$£¬$\frac{3mv}{qB}$ |
11£®¹âÔÚ¿ÆÑ§¼¼Êõ¡¢Éú²úºÍÉú»îÖÐÓÐ׏㷺µÄÓ¦Óã¬ÏÂÁзûºÏʵ¼ÊÓ¦ÓõÄÊÇ£¨¡¡¡¡£©
| A£® | Ôڹ⵼ÏËÎ¬ÊøÄÚ´«ËÍͼÏóÊÇÀûÓùâµÄɫɢÏÖÏó | |
| B£® | ÓÃ͸Ã÷µÄ±ê×¼Æ½ÃæÑù°å¼ì²é¹âÑ§Æ½ÃæµÄƽÕû³Ì¶ÈÊÇÀûÓùâµÄÑÜÉäÏÖÏó | |
| C£® | ¹âѧ¾µÍ·ÉϵÄÔö͸ĤÊÇÀûÓùâµÄ¸ÉÉæÏÖÏó | |
| D£® | ¸÷ÖÖ¹â¾ù»á·¢ÉúÆ«ÕñÏÖÏó |
5£®ÎïÌå´Óijһ¸ß´¦Æ½Å×£¬Æä³õËÙ¶ÈΪv0£¬Â䵨ËÙ¶ÈΪV£¬²»¼Æ×èÁ¦£¬ÔòÎïÌåÔÚ¿ÕÖзÉÐÐʱ¼äΪ£¨¡¡¡¡£©
| A£® | $\frac{{{v_0}-v}}{2g}$ | B£® | $\frac{{v-{v_0}}}{2g}$ | C£® | $\frac{{\sqrt{{v^2}-v_0^2}}}{2g}$ | D£® | $\frac{{\sqrt{{v^2}-v_0^2}}}{g}$ |
9£®ÎïÌåÔÚÏÂÁÐÔ˶¯¹ý³ÌÖУ¬»úеÄÜÊØºãµÄÊÇ£¨¡¡¡¡£©
| A£® | ÑØ´Ö²ÚÐ±ÃæÔÈËÙÏ»¬ | B£® | ÑØ´Ö²ÚÐ±ÃæÔÈËÙÉÏ»¬ | ||
| C£® | ÑØ´Ö²ÚÐ±Ãæ¼ÓËÙÏ»¬ | D£® | ÑØ¹â»¬Ð±Ãæ×ÔÓÉÏ»¬ |