ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Á£×Ó´ÓÉäÈëµç³¡µ½´òµ½ÆÁÉÏËùÓõÄʱ¼ä£»
£¨2£©Á£×Ó¸ÕÉä³öµç³¡Ê±µÄËÙ¶È´óС£»
£¨3£©Á£×Ó´òµ½ÆÁÉϵÄλÖõ½OµãµÄ¾àÀëy£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÑسõËÙ¶È·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Á£×ÓÀ뿪µç³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÔÚ³õËÙ¶È·½ÏòµÄ·ÖËٶȱ£³Ö²»±ä£¬¸ù¾ÝÀëÆÁµÄ¾àÀëºÍ³õËٶȵĴóСÇó³öÁ£×ÓÔ˶¯µÄʱ¼ä£»
£¨2£©Çó³öÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯µÄ¼ÓËÙ¶È£¬¸ù¾ÝËÙ¶Èʱ¼ä¹ØÏµÇó½âÊúÖ±·½ÏòËÙ¶È£¬ÔÙ½øÐкϳÉÇó½âºÏËÙ¶È£»
£¨3£©¸ù¾ÝÀàÆ½Å×Ô˶¯µÄÌØµãÖª£¬³öÉäʱËÙ¶È·½Ïò·´ÏòÑÓ³¤Ïß¹ýË®Æ½Î»ÒÆµÄÖе㣬¸ù¾ÝÈý½ÇÐÎÏàËÆÇó½ây£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬Á£×ÓÔÚ´¹Ö±Óڵ糡Ïߵķ½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬ËùÒÔÁ£×Ó´ÓÉäÈëµ½´òµ½ÆÁÉÏËùÓõÄʱ¼äΪ£º
t=$\frac{2L}{{v}_{0}}$£»
£¨2£©Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬´¹Ö±µç³¡·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Ñص糡·½Ïò×ö³õËÙ¶ÈΪ0µÄÔȼÓËÙÖ±ÏßÔ˶¯£¬
ËùÒÔÁ£×ÓÔڵ糡Á¦×÷ÓÃϲúÉúµÄ¼ÓËÙ¶ÈΪ£º$a=\frac{qE}{m}$£¬
Á£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼äΪ£º$t=\frac{L}{{v}_{0}}$£¬![]()
³öµç³¡Ê±ÊúÖ±·½ÏòµÄËÙ¶ÈΪ£º${v}_{y}=at=\frac{qEL}{m{v}_{0}}$£¬
Á£×Ó¸ÕÉä³öµç³¡Ê±µÄËÙ¶È´óСΪ$v=\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}=\sqrt{{v}_{0}^{2}+\frac{{q}^{2}{E}^{2}{L}^{2}}{{m}^{2}{v}_{0}^{2}}}$
£¨3£©Á£×ÓÉä³öµç³¡Ê±Ôڵ糡·½Ïò²úÉúµÄÎ»ÒÆÎª£º$\frac{1}{2}a{t}^{2}=\frac{qE{L}^{2}}{2m{v}_{0}^{2}}$£¬
¸ù¾ÝÁ£×Ó³öÉäʱËÙ¶È·½Ïò·´ÏòÑÓ³¤Ïß¹ýË®Æ½Î»ÒÆµÄÖеã¿ÉµÃ£º
$\frac{y¡ä}{y}=\frac{\frac{L}{2}}{\frac{L}{2}+L}$
Á£×Ó´òµ½ÆÁÉÏPµ½OµãµÄ¾àÀëΪy=$\frac{3qE{L}^{2}}{2m{{v}_{0}}^{2}}$£®
´ð£º£¨1£©Á£×Ó´ÓÉäÈëµç³¡µ½´òµ½ÆÁÉÏËùÓõÄʱ¼äΪ$\frac{2L}{{v}_{0}}$£»
£¨2£©Á£×Ó¸ÕÉä³öµç³¡Ê±µÄËÙ¶È´óСΪ$\sqrt{{v}_{0}^{2}+\frac{{q}^{2}{E}^{2}{L}^{2}}{{m}^{2}{v}_{0}^{2}}}$£»
£¨3£©Á£×Ó´òµ½ÆÁÉϵÄλÖõ½OµãµÄ¾àÀëΪ$\frac{3qE{L}^{2}}{2m{{v}_{0}}^{2}}$£®
µãÆÀ ±¾ÌâÖдøµçÁ£×ÓÏÈ×öÀàÆ½Å×Ô˶¯ºó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔËÓÃÔ˶¯µÄ·Ö½âµÄ·½·¨£¬µç³¡·½ÏòºÍ´¹Ö±µç³¡·½Ïò·Ö±ðÇó·ÖÔ˶¯µÄ¹æÂÉ´Ó¶øÑо¿µÃ³öÀàÆ½Å×Ô˶¯¹æÂÉ£¬¸ù¾Ý¼¸ºÎ֪ʶºÍ¶¯Äܶ¨ÀíÇó½âÏàÓ¦ÎïÀíÁ¿£®
| A£® | Ôö´ó | B£® | ²»±ä | ||
| C£® | ¼õС | D£® | ¿ÉÄÜÔö´óÒ²¿ÉÄܼõС |
| A£® | µãµçºÉM¡¢N¿ÉÄÜÊÇÒìÖÖµçºÉ | |
| B£® | µãµçºÉPµÄµçÊÆÄÜÒ»¶¨ÊÇÏÈÔö´óºó¼õС | |
| C£® | µãµçºÉM¡¢NËù´øµçºÉÁ¿µÄ¾ø¶ÔÖµÖ®±ÈΪ4£º1 | |
| D£® | x=4a´¦µÄµç³¡Ç¿¶ÈÒ»¶¨ÎªÁã |