ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÔÈÇ¿µç³¡³¡Ç¿EµÄ´óС
£¨2£©Ð¡ÇòÔ˶¯µ½ÓëAµã¶Ô³ÆµÄBµãʱ£¬»·¶ÔСÇòµÄ×÷ÓÃÁ¦µÄ´óС
£¨3£©Ð¡ÇòÔ˶¯¾¹ýÔ²»·×îµÍµãʱ£¬»·¶ÔСÇòµÄ×÷ÓÃÁ¦µÄ´óС£®
·ÖÎö £¨1£©ÔÚAµã£¬Ô²»·ÓëСÇò¼äÎÞ×÷ÓÃÁ¦£¬¿¿µç³¡Á¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³¡Ç¿£®
£¨2£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öBµãµÄËÙ¶È£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö»·¶ÔСÇòµÄ×÷ÓÃÁ¦£¬´Ó¶øµÃ³ö»·¶ÔСÇòµÄ×÷ÓÃÁ¦£®
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö×îµÍµãµÄËÙ¶È£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö»·¶ÔСÇòµÄ×÷ÓÃÁ¦£®
½â´ð ½â£º£¨1£©ÔÚAµã£¬Ð¡ÇòÔÚˮƽ·½ÏòÖ»Êܵ糡Á¦×÷Ó㬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº$qE=m\frac{{V}^{2}}{r}$
½âµÃ£ºE=$\frac{m{V}^{2}}{qr}$£®
£¨2£©ÔÚСÇò´ÓAµ½BµÄ¹ý³ÌÖУ¬¸ù¾Ý¶¯Äܶ¨Àí£¬µç³¡Á¦×öµÄÕý¹¦µÈÓÚСÇò¶¯ÄܵÄÔö¼ÓÁ¿£¬¼´£º
$2qEr=\frac{1}{2}{mv}_{A}^{2}-\frac{1}{2}m{V}^{2}$
СÇòÔÚBµãʱ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÔÚˮƽ·½ÏòÓУº${N}_{B}-qE=\frac{{mv}_{B}^{2}}{r}$
ÁªÁ¢½âµÃ£º${N}_{B}=\frac{6m{V}^{2}}{r}$£®
£¨3£©´ÓAµ½×îµÍµã¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º$qEr+mgr=\frac{1}{2}m{v}^{¡ä2}-\frac{1}{2}{mV}_{\;}^{2}$
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵãºN-mg=$\frac{m{v¡ä}^{2}}{r}$
½âµÃ£ºN=$\frac{3m{V}^{2}}{r}+3mg$
´ð£º£¨1£©ÔÈÇ¿µç³¡³¡Ç¿EµÄ´óС$\frac{m{V}^{2}}{qr}$
£¨2£©Ð¡ÇòÔ˶¯µ½ÓëAµã¶Ô³ÆµÄBµãʱ£¬¶ÔСÇòµÄ×÷ÓÃÁ¦Îª$\frac{6m{V}^{2}}{r}$£®
£¨3£©Ð¡ÇòÔ˶¯¾¹ýÔ²ÖÜ×îµÍµãʱ£¬¶ÔСÇòµÄ×÷ÓÃÁ¦Îª$\frac{3m{V}^{2}}{r}+3mg$£®
µãÆÀ ±¾Ì⿼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂɺͶ¯Äܶ¨ÀíµÄ×ÛºÏÔËÓã¬ÖªµÀÔ²ÖÜÔ˶¯ÏòÐÄÁ¦µÄÀ´Ô´Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | S¶Ï¿ªÊ±£¬MNµçѹ×î´ó£¬ONµçѹΪÁã | |
| B£® | S¶Ï¿ªÊ±£¬MNµçѹΪÁ㣬ONµçѹΪ$\frac{{U}_{1}{n}_{2}}{{n}_{1}}$ | |
| C£® | S±ÕºÏʱ£¬MNµçѹΪ$\frac{{U}_{1}{n}_{2}}{{n}_{1}}$ | |
| D£® | S±ÕºÏ£¬ÇÒ»¬¶¯´¥Í·ÏòÏ»¬Ê±£¬ÔÏßȦµçÁ÷±äС£¬¸±ÏßȦµçÁ÷±ä´ó |
| A£® | ÓÉcÊͷŵÄСÇòÏȵ½´ïdµã | |
| B£® | ÈýСÇòµ½´ïdµãʱµÄ»úеÄÜÏàµÈ | |
| C£® | ÈýСÇòÔ˶¯¹ý³ÌÖÐËÙ¶È´óÐ¡ËæÊ±¼äµÄ±ä»¯ÂÊÏàµÈ | |
| D£® | ÈýСÇòÔ˶¯µ½×îµÍµãµÄ¹ý³ÌÖÐÑØad¹ìµÀÔ˶¯Ð¡ÇòÖØÁ¦×ö¹¦µÄƽ¾ù¹¦ÂÊ×î´ó |
| A£® | t0ʱ¿ÌµÄ˲ʱ¹¦ÂÊΪ$\frac{{{F}_{0}}^{2}{t}_{0}}{m}$ | |
| B£® | ÔÚt=0µ½2t0Õâ¶Îʱ¼äÄÚ£¬Ë®Æ½Á¦µÄƽ¾ù¹¦ÂÊΪ$\frac{{{F}_{0}}^{2}{t}_{0}}{m}$ | |
| C£® | ˮƽÁ¦FÔÚt=0µ½2t0Õâ¶Îʱ¼äÄÚ±È2t0µ½3t0Õâ¶Îʱ¼äÄ򵀮½¾ù¹¦ÂÊÒª´ó | |
| D£® | ˮƽÁ¦FÔÚt=0µ½3t0Ôò¶Ïʱ¼äÄÚËù×öµÄ¹¦Îª$\frac{25{{F}_{0}}^{2}{{t}_{0}}^{2}}{2m}$ |