ÌâÄ¿ÄÚÈÝ
15£®£¨1£©»¬¿éͨ¹ýBµãʱµÄËÙ¶È´óС£»
£¨2£©»¬¿é´ÓCµã»¬µ½AµãµçÊÆÄܱ仯µÄÖµÊǶà´ó£¿
£¨3£©ÊÔ·ÖÎö£¬»¬¿éÔÚË®Æ½ÃæÉϾ¹ý·µÄ×î´óÖµÊǶàÉÙ£¿
·ÖÎö £¨1£©Ð¡»¬¿é´ÓCµ½BµÄ¹ý³ÌÖУ¬Ö»ÓÐÖØÁ¦ºÍµç³¡Á¦¶ÔËü×ö¹¦£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½â£®
£¨2£©¶ÔÕû¸ö¹ý³ÌÑо¿£¬ÖØÁ¦×öÕý¹¦£¬Ë®Æ½ÃæÉÏĦ²ÁÁ¦×ö¸º¹¦£¬µç³¡Á¦×ö¸º¹¦£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³öˮƽ¹ìµÀÉÏA¡¢BÁ½µãÖ®¼äµÄ¾àÀë¼°µç³¡Á¦×ö¹¦£®
½â´ð ½â£º£¨1£©Ð¡»¬¿é´ÓCµ½BµÄ¹ý³ÌÖУ¬Ö»ÓÐÖØÁ¦ºÍµç³¡Á¦¶ÔËü×ö¹¦£¬
É軬¿éͨ¹ýBµãʱµÄËÙ¶ÈΪvB£¬¸ù¾Ý¶¯Äܶ¨ÀíÓУº
mgR-qER=$\frac{1}{2}{mv}_{B}^{2}$
½âµÃ£ºvB=$\sqrt{\frac{2£¨mg-qE£©R}{m}}$
£¨2£©´ÓCµ½AÓɶ¯Äܶ¨Àí¿ÉÖª
mgR-qE£¨x+R£©-¦Ìmgx=0-0
x=$\frac{mgR-qER}{qE+¦Ìmg}$
µçÊÆÄܱ仯Ϊ$E=qE•£¨x+R£©=\frac{qE£¨mgR+¦ÌmgR£©}{qE+¦Ìmg}$
´ð£º£¨1£©»¬¿éͨ¹ýBµãʱµÄËÙ¶È´óСΪ$\sqrt{\frac{2£¨mg-qE£©R}{m}}$£»
£¨2£©»¬¿é´ÓCµã»¬µ½AµãµçÊÆÄܱ仯µÄÖµÊÇ$\frac{mgR-qER}{qE+¦Ìmg}$
£¨3£©ÊÔ·ÖÎö£¬»¬¿éÔÚË®Æ½ÃæÉϾ¹ý·µÄ×î´óÖµÊÇ$\frac{qE£¨mgR+¦ÌmgR£©}{qE+¦Ìmg}$
µãÆÀ ±¾Ì⿼²é·ÖÎöºÍ´¦ÀíÎïÌåÔÚ¸´ºÏ³¡Ô˶¯µÄÄÜÁ¦£®¶ÔÓڵ糡Á¦×ö¹¦W=qEd£¬dΪÁ½µãÑØµç³¡Ïß·½ÏòµÄ¾àÀë
| A£® | ÔÚµçÔ´Íⲿ°Ñ6 JµÄµçÄÜת»¯Îª»¯Ñ§ÄÜ | |
| B£® | ÔÚµçÔ´Íⲿ°Ñ6 JµÄ»¯Ñ§ÄÜת»¯ÎªµçÄÜ | |
| C£® | ÔÚµçÔ´ÄÚ²¿·Ç¾²µçÁ¦×ö¹¦6J | |
| D£® | ÔÚµçÔ´ÄÚ²¿µç³¡Á¦×ö¹¦6J |
| A£® | Ñо¿ÌøË®Ô˶¯Ô±×ªÌ嶯×÷ʱ£¬Ô˶¯Ô±¿ÉÊÓΪÖʵã | |
| B£® | ¾²Ö¹µÄÎïÌåÒ»¶¨²»ÊÜ»¬¶¯Ä¦²ÁÁ¦ | |
| C£® | ËÙ¶È´óµÄÎïÌå¹ßÐÔ´ó£¬ËÙ¶ÈСµÄÎïÌå¹ßÐÔС | |
| D£® | ¾²Ö¹ÓÚ×ÀÃæÉϵÄÊ飬Êܵ½×ÀÃæµÄÖ§³ÖÁ¦ÊÇÒòΪ×ÀÃæ·¢ÉúÐÎ±ä¶ø²úÉú |
| A£® | Éϼ«°å´ø¸ºµç£¬³äµçµçÁ÷Ô½À´Ô½´ó | |
| B£® | Éϼ«°å´øÕýµç£¬³äµçµçÁ÷Ô½À´Ô½Ð¡£¬×îºóµÈÓÚÁã | |
| C£® | ´øµçÁ¿Ô½À´Ô½´ó£¬×îÖÕµÈÓÚ$\frac{CS£¨{B}_{2}-{B}_{1}£©}{{t}_{0}}$ | |
| D£® | ´øµçÁ¿Ô½À´Ô½´ó£¬×îÖÕ½«Ð¡ÓÚ$\frac{CS£¨{B}_{2}-{B}_{1}£©}{{t}_{0}}$ |