ÌâÄ¿ÄÚÈÝ
10£®Èçͼ£¨¼×£©£¬MN¡¢PQÁ½ÌõƽÐеĽðÊô¹ìµÀÓëË®Æ½Ãæ³É¦È=30¡ã½Ç¹Ì¶¨£¬M¡¢PÖ®¼ä½Óµç×èÏäR£¬µç×èÏäµÄ×èÖµ·¶Î§Îª0¡«4¦¸£¬µ¼¹ìËùÔÚ¿Õ¼ä´æÔÚÔÈÇ¿´Å³¡£¬´Å³¡·½Ïò´¹Ö±ÓÚ¹ìµÀÆ½ÃæÏòÉÏ£¬´Å¸ÐӦǿ¶ÈΪB=0.5T£®ÖÊÁ¿ÎªmµÄ½ðÊô¸Ëabˮƽ·ÅÖÃÔÚ¹ìµÀÉÏ£¬²¢´¹Ö±¹ìµÀ£¬Æä½ÓÈëµç·µÄµç×èֵΪr£®½ðÊô°ôºÍ¹ìµÀ¼äµÄ¶¯Ä¦²ÁÒòËØÎª¦Ì=$\frac{\sqrt{3}}{6}$£¬ÏÖ´Ó¾²Ö¹ÊͷŸËa¡¡b£¬²âµÃ×î´óËÙ¶ÈΪvm£®¸Ä±äµç×èÏäµÄ×èÖµR£¬µÃµ½vmÓëRµÄ¹ØÏµÈçͼ£¨ÒÒ£©Ëùʾ£®ÒÑÖª¹ì¾àΪL=2m£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬¹ìµÀ×ã¹»³¤ÇÒµç×è²»¼Æ£®£¨1£©Çó½ðÊô¸ËµÄÖÊÁ¿mºÍ×èÖµr£»
£¨2£©Çó½ðÊô¸ËÔÈËÙÏ»¬Ê±µç×èÏäÏûºÄµç¹¦ÂʵÄ×î´óÖµPm£»
£¨3£©µ±R=4¦¸Ê±£¬ÇóËæ×ŸËabÏ»¬»ØÂ·Ë²Ê±µç¹¦ÂÊÿÔö´ó1WµÄ¹ý³ÌÖкÏÍâÁ¦¶Ô¸Ë×öµÄ¹¦W£®
·ÖÎö £¨1£©½ðÊô¸Ë´Ó¾²Ö¹¿ªÊ¼ÏÈ×ö¼ÓËٶȼõСµÄ±ä¼ÓËÙÔ˶¯£¬×îºóÊÇÔÈËÙÔ˶¯£¬ÊÜÖØÁ¦¡¢Ö§³ÖÁ¦ºÍ°²ÅàÁ¦¶øÆ½ºâ£¬¸ù¾ÝƽºâÌõ¼þÍÆµ¼³ö ×î´óËÙ¶ÈvmÓëRµÄ¹ØÏµ±í´ïʽ½áºÏͼÏó·ÖÎö£»
£¨2£©¸ù¾Ý¹¦ÄܹØÏµÇó½â½ðÊô¸ËÔÈËÙÏ»¬Ê±µç×èÏäÏûºÄµç¹¦ÂʵÄ×î´óÖµPm£»
£¨3£©µ±±ä×èÏäRÈ¡4¦¸£¬¸ù¾ÝͼÏóµÃµ½×î´óËÙ¶È£¬È»ºó½áºÏÇиʽºÍµç¹¦Âʱí´ïʽ·ÖÎö£®
½â´ð ½â£º£¨1£©µç·µÄ×ܵç×裺R×Ü=R+r
¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉ£¬µçÁ÷£º
I=$\frac{BLv}{R+r}$
µ±´ïµ½×î´óËÙ¶Èʱ¸Ëƽºâ£¬ÓУº
mgsin¦È=BIL+¦Ìmgcos¦È=$\frac{{B}^{2}{L}^{2}{v}_{m}}{R+r}$+¦Ìmgcos¦È
¼´£ºvm=$\frac{mg£¨sin¦È-¦Ìcos¦È£©£¨R+r£©}{{B}^{2}{L}^{2}}$=$\frac{m¡Á10¡Á£¨sin30¡ã-\frac{\sqrt{3}}{6}¡Ácos30¡ã£©¡Á£¨R+r£©}{0£®{5}^{2}¡Á{2}^{2}}$=2.5m£¨R+r£©
ͼÏóµÄбÂÊ k=1£¬ÔòµÃ2.5m=1£¬m=0.4kg
×ÝÖá½Ø¾à b=2£¬ÔòµÃ 2.5mr=2£¬µÃ r=2¦¸
£¨2£©½ðÊô¸ËÔÈËÙÏ»¬Ê±µçÁ÷Îȶ¨£¬ÉèΪI£®
¸ù¾ÝƽºâÌõ¼þµÃ
mgsin¦È=BIL+¦Ìmgcos¦È
µÃ I=$\frac{mg£¨sin¦È-¦Ìcos¦È£©}{BL}$=$\frac{4¡Á£¨sin30¡ã-\frac{\sqrt{3}}{6}¡Ácos30¡ã£©}{0.5¡Á2}$A=1A
¹Ê½ðÊô¸ËÔÈËÙÏ»¬Ê±µç×èÏäÏûºÄµç¹¦ÂʵÄ×î´óÖµ Pm=I2Rm=12¡Á4W=4W
£¨3£©ÓÉÌâÒ⣺E=BLv£¬P=$\frac{{E}^{2}}{R+r}$
µÃ P=$\frac{{B}^{2}{L}^{2}{v}^{2}}{R+r}$
Ôò¡÷P=$\frac{{B}^{2}{L}^{2}{v}_{2}^{2}}{R+r}$-$\frac{{B}^{2}{L}^{2}{v}_{1}^{2}}{R+r}$
Óɶ¯Äܶ¨ÀíµÃ£º
W=$\frac{1}{2}m{v}_{2}^{2}$-$\frac{1}{2}m{v}_{1}^{2}$
ÁªÁ¢µÃ W=$\frac{m£¨R+r£©}{2{B}^{2}{L}^{2}}¡÷$P=$\frac{0.4¡Á£¨4+2£©}{2¡Á0£®{5}^{2}¡Á{2}^{2}}¡Á$1J=1.2J
´ð£º
£¨1£©½ðÊô¸ËµÄÖÊÁ¿mÊÇ£¬0.4kg£¬×èÖµrÊÇ2¦¸£»
£¨2£©½ðÊô¸ËÔÈËÙÏ»¬Ê±µç×èÏäÏûºÄµç¹¦ÂʵÄ×î´óÖµPmÊÇ4W£®
£¨3£©µ±R=4¦¸Ê±£¬Ëæ×ŸËabÏ»¬»ØÂ·Ë²Ê±µç¹¦ÂÊÿÔö´ó1WµÄ¹ý³ÌÖкÏÍâÁ¦¶Ô¸Ë×öµÄ¹¦WÊÇ1.2J£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·µ¼Ìå°ôµÄÊÜÁ¦Çé¿öºÍÔ˶¯¹æÂÉ£¬È»ºó¸ù¾ÝÇиʽ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ¡¢µç¹¦Âʱí´ïʽÁÐʽ·ÖÎö£®
| A£® | ´Ë¹ý³ÌÖÐͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿Îª$\frac{3B{a}^{2}}{2R}$ | |
| B£® | ´Ë¹ý³ÌÖÐÏß¿ò¿Ë·þ°²ÅàÁ¦×öµÄ¹¦Îª$\frac{3}{8}$mv2 | |
| C£® | ´ËʱÏß¿òµÄ¼ÓËÙ¶ÈΪ$\frac{9{B}^{2}{a}^{2}v}{2mR}$ | |
| D£® | ´ËʱÏß¿òÖеĵ繦ÂÊΪ$\frac{9{B}^{2}{a}^{2}{v}^{2}}{2R}$ |
| A£® | $\frac{E}{2{B}^{2}R}$ | B£® | $\frac{B}{{E}^{2}R}$ | C£® | $\frac{E}{{B}^{2}R}$ | D£® | $\frac{B}{2{E}^{2}R}$ |
| A£® | $\sqrt{3}$ | B£® | $\frac{\sqrt{3}}{3}$ | C£® | 3$\sqrt{3}$ | D£® | $\frac{\sqrt{3}}{9}$ |
| A£® | ¼×ÎïÌåµÄÏßËٶȱȱûÎïÌåµÄÏßËÙ¶ÈС | |
| B£® | ÒÒÎïÌåµÄ½ÇËٶȱȱûÎïÌåµÄ½ÇËÙ¶ÈС | |
| C£® | ¼×ÎïÌåµÄÏòÐļÓËٶȱÈÒÒÎïÌåµÄÏòÐļÓËÙ¶È´ó | |
| D£® | ÒÒÎïÌåÊܵ½µÄÏòÐÄÁ¦±È±ûÎïÌåÊܵ½µÄÏòÐÄÁ¦Ð¡ |