((本小题满分12分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(1)求证:EF平面PAD;(2)求平面EFG与平面ABCD所成锐二面角的大小;
(本小题满分14分)如图,四棱锥的底面为菱形,平面,,、分别为、的中点。(I)求证:平面; (Ⅱ)求三棱锥的体积;(Ⅲ)求平面与平面所成的锐二面角大小的余弦值。
(本小题共12分)如图,在正方体ABCD —中E是AB的中点,O是侧面的中心.
C1
O
D
B
(12分)如图,四棱锥P-中,底面是正方形,是正方形的中心,底面,是的中点.求证:(1)∥平面;(2)平面平面.
.(本小题满分12分)如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)设,求三棱锥A-BFE的体积.
如图,已知正方体的棱长为2,点分别为和的中点.(Ⅰ)求异面直线CM与所成角的余弦值;(Ⅱ)求点到平面的距离.
(本小题满分13分)如图,正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.(1)求此正三棱柱的侧棱长;(2)求平面ABD与平面CBD夹角的余弦;(3)求点C到平面ABD的距离.
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。(Ⅰ)证明:平面 平面;(Ⅱ)若,60°,求四棱锥的体积。
(本小题满分12分)如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.(1)求证:平面;(2)设的中点为,求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求.
(本小题满分分)在四棱锥中,平面平面,△是等边三角形,底面是边长为的菱形,,是的中点,是的中点.(Ⅰ)求证:平面;(Ⅱ) 求证:∥平面;(Ⅲ) 求直线与平面所成角的余弦值.