搜索
函数
.
(1)求函数f(x)的最小正周期;
(2)若存在
,使不等式f(x
0
)<m成立,求实数m的取值范围.
已知复数Z满足(
+i)z=2i,则Z=________.
设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为
A.
(-1,0)∪(1,+∞)
B.
(-1,0)∪(0,1)
C.
(-∞,-1)∪(1,+∞)
D.
(-∞,-1)∪(0,1)
要建造一个容积为2000m
3
,深为5m的长方体无盖蓄水池,池壁的造价为95元/m
2
,池底的造价为135元/m
2
,若水池底的一边长为xm,水池的总造价为y元.
(1)把水池总造价y表示为x的函数y=f(x),并写出函数的定义域.
(2)试证明:函数y=f(x)当x∈(0,20]时是减函数,当x∈[20,+∞)时是增函数
(3)当水池底的一边长x为多少时,水池的总造价最低,最低造价是多少.
已知非零向量
,
满足|
-
|=|
+
|=λ|
|(λ≥2),则向量
-
与
+
的夹角的最大值为________.
已知f(x)=sin(x+
),g(x)=cos(x-
),则f(x)的图象
A.
与g(x)的图象相同
B.
向左平移
个单位,得到g(x)的图象
C.
与g(x)的图象关于y轴对称
D.
向右平移
个单位,得到g(x)的图象
已知不重合的两个点P(1,cosx),Q(cosx,1)
,O为坐标原点.
(1)求
夹角的余弦值f(x)的解析式及其值域;
(2)求△OPQ的面积S(x),并求出其取最大值时,
的值.
若曲线y=x
2
+ax+b在点(0,b)处的切线方程是y=x+1,则a=________,b=________.
若正数x,y满足4x
2
+9y
2
+3xy=30,则xy的最大值是
A.
B.
C.
2
D.
已知存在正数a,b,c满足
,则下列判断正确的是
A.
B.
C.
D.
0
5182
5190
5196
5200
5206
5208
5212
5218
5220
5226
5232
5236
5238
5242
5248
5250
5256
5260
5262
5266
5268
5272
5274
5276
5277
5278
5280
5281
5282
5284
5286
5290
5292
5296
5298
5302
5308
5310
5316
5320
5322
5326
5332
5338
5340
5346
5350
5352
5358
5362
5368
5376
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案