若α是第四象限的角,则π-α是( )
| A、第一象限的角 | B、第二象限的角 | C、第三象限的角 | D、第四象限的角 |
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据建立一个2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1,2,3,4,5,某5名爱看课外书且作文水平一般的学生也分别编号为1,2,3,4,5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
附:K2=
临界值表:
0 31347 31355 31361 31365 31371 31373 31377 31383 31385 31391 31397 31401 31403 31407 31413 31415 31421 31425 31427 31431 31433 31437 31439 31441 31442 31443 31445 31446 31447 31449 31451 31455 31457 31461 31463 31467 31473 31475 31481 31485 31487 31491 31497 31503 31505 31511 31515 31517 31523 31527 31533 31541 266669
(Ⅰ)试根据以上数据建立一个2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1,2,3,4,5,某5名爱看课外书且作文水平一般的学生也分别编号为1,2,3,4,5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
附:K2=
| (a+b+c+d)(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |