题目内容
设点F(| p |
| 2 |
| MP |
| PN |
| PM |
| PF |
(Ⅰ)当点P在y轴上运动时,求点N的轨迹C的方程;
(Ⅱ)直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=-
| p |
| 2 |
| FA1 |
| FB1 |
(Ⅲ)在(Ⅱ)的条件下,记S1=S△FAA1,S2=S△FA1B1,S3=S△FBB1,λ=
| S22 |
| S1•S3 |
分析:(1)设N(x,y),M(a,0),(a>0),P(0,b),由
=
可得,x=-a,y=2b,由
⊥
可得
•
=
+b2=0,从而可求x,y满足的方程
(2)由抛物线的定义可得AF=AA1,BF=BB1,AA1∥MF∥BB1
从而有∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
则有∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
∠A1FB1=∠B1FM+∠MFA1=
∠AFM+
∠BFM=90°
(3)设直线AB的方程为:x=ky+
A(x1,y1) B(x2,y2)
联立方程
整理可得y2-2pky-p2=0
则y1+y2=2pk,y1y2=-p2 x1x2=
=
x1+x2=k(y1+y2)+p=2pk2+p
λ=
=
代入整理可求
| MP |
| PN |
| PM |
| PF |
| PM |
| PF |
| pa |
| 2 |
(2)由抛物线的定义可得AF=AA1,BF=BB1,AA1∥MF∥BB1
从而有∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
则有∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
∠A1FB1=∠B1FM+∠MFA1=
| 1 |
| 2 |
| 1 |
| 2 |
(3)设直线AB的方程为:x=ky+
| p |
| 2 |
联立方程
|
则y1+y2=2pk,y1y2=-p2 x1x2=
| ||||
| 2p•2p |
| p2 |
| 4 |
λ=
| S22 |
| S1•S3 |
(
| ||||
(
|
解答:解:(1)设N(x,y),M(a,0),(a>0),P(0,b)
由
=
可得,x=-a,y=2b①
由
⊥
可得
•
=
+b2=0②
①②联立可得y2=2px(p>0)
(2)由抛物线的定义可得AF=AA1,BF=BB1,AA1∥MF∥BB1
∴∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
∴∠A1FB1=∠B1FM+∠MFA1=
∠AFM+
∠BFM=90°
即FA1⊥FB1∴
•
=0
(3)设直线AB的方程为:x=ky+
A(x1,y1) B(x2,y2)
联立方程
整理可得y2-2pky-p2=0
则y1+y2=2pk,y1y2=-p2 x1x2=
=
x1+x2=k(y1+y2)+p=2pk2+p
λ=
=
=
=
=
=4

由
| MP |
| PN |
由
| PM |
| PF |
| PM |
| PF |
| pa |
| 2 |
①②联立可得y2=2px(p>0)
(2)由抛物线的定义可得AF=AA1,BF=BB1,AA1∥MF∥BB1
∴∠AFA1=∠AA1F=∠MFA1,∠BFB1=∠BB1F=∠MFB1
∴∠A1FB1=∠B1FM+∠MFA1=
| 1 |
| 2 |
| 1 |
| 2 |
即FA1⊥FB1∴
| FA1 |
| FB1 |
(3)设直线AB的方程为:x=ky+
| p |
| 2 |
联立方程
|
则y1+y2=2pk,y1y2=-p2 x1x2=
| ||||
| 2p•2p |
| p2 |
| 4 |
λ=
| S22 |
| S1•S3 |
(
| ||||
(
|
| p2(y1-y2)2 | ||||
(x1+
|
| ( y1+y2)2-4y1y2 |
| p2(1+k2)2 |
=
| 4p2k2 +4p2 |
| p2k2+p2 |
点评:本题以平面向量向量的基本运算为载体,重点考查了抛物线的性质的应用,直线与抛物线的位置关系等知识的综合运用,解决本题(2)的关键是要熟练掌握抛物线的定义发现AF=AA1,BF=BB1,解决(3)时要注意设直线方程时为了避免讨论斜率k的值是否存在,故可设直线AB的方程为:x=ky+
| p |
| 2 |
练习册系列答案
相关题目