题目内容
设函数f(x)=| x |
| a(x+2) |
| 2 |
| 2013 |
(1)求f(x)的表达式;
(2)求x2011的值;
(3)若an=
| 4 |
| xn |
| ||||
| 2an+1an |
分析:(1)由方程x=f(x)有唯一解,则ax2+(2a-1)x=0有唯一解,知 a=
,由此能求出f(x)的表达式;
(2)由f(xn)=xn+1,知
-
=
(n∈N*),由 等差数列的定义可求出数列{xn}的通项公式;
(3)由bn=
=
=
=1+
=1+
-
b1+b2+…+bn-n<1,由此能证明b1+b2+…+bn<n+1.
| 1 |
| 2 |
(2)由f(xn)=xn+1,知
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
(3)由bn=
| ||||
| 2an+1an |
| (2n+1)2+(2n-1)2 |
| 2(2n+1)(2n-1) |
| 4n2+1 |
| 4n2-1 |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
b1+b2+…+bn-n<1,由此能证明b1+b2+…+bn<n+1.
解答:解:(1)由
=x,可化简为ax(x+2)=x∴ax2+(2a-1)x=0
∴当且仅当a=
时,方程x=f(x)有唯一解.
从而f(x)=
(2)由已知f(xn)=xn+1(n∈N*),得
=xn+1
∴
=
+
,即
-
=
(n∈N*)
∴数列{
}是以
为首项,
为公差的等差数列.
=
+(n-1)×
=
,∴xn=
∵f(x1)=
,
∴
=
,即x1=
∴xn=
=
故x2011=
=
(3)证明:∵xn=
,
∴an=4×
-4023=2n-1∴bn=
=
=
=1+
=1+
-
∴b1+b2+bn-n=(1+1-
)+(1+
-
)++(1+
-
)-n=1-
<1
故b1+b2+…+bn<n+1.
| x |
| a(x+2) |
∴当且仅当a=
| 1 |
| 2 |
从而f(x)=
| 2x |
| x+2 |
(2)由已知f(xn)=xn+1(n∈N*),得
| 2xn |
| xn+2 |
∴
| 1 |
| xn+1 |
| 1 |
| 2 |
| 1 |
| xn |
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
∴数列{
| 1 |
| xn |
| 1 |
| x1 |
| 1 |
| 2 |
| 1 |
| xn |
| 1 |
| x1 |
| 1 |
| 2 |
| (n-1)x1+2 |
| 2x1 |
| 2x1 |
| (n-1)x1+2 |
∵f(x1)=
| 2 |
| 2013 |
∴
| 2x1 |
| x1+2 |
| 2 |
| 2013 |
| 1 |
| 1006 |
∴xn=
2×
| ||
(n-1)×
|
| 2 |
| n+2011 |
故x2011=
| 2 |
| 2011+2011 |
| 1 |
| 2011 |
(3)证明:∵xn=
| 2 |
| n+2011 |
∴an=4×
| n+2011 |
| 2 |
| ||||
| 2an+1an |
| (2n+1)2+(2n-1)2 |
| 2(2n+1)(2n-1) |
| 4n2+1 |
| 4n2-1 |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴b1+b2+bn-n=(1+1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
故b1+b2+…+bn<n+1.
点评:本题考查数列的性质和应用,解题时要注意通项公式的求法和裂项公式的合理运用,属于中档题.
练习册系列答案
相关题目