【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量
(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量
(百斤)与使用某种液体肥料
(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合
与
的关系?请计算相关系数
并加以说明(精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
周光照量 |
|
|
|
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
附:相关系数公式
,参考数据
,
.
【题目】某高三理科班共有
名同学参加某次考试,从中随机挑出
名同学,他们的数学成绩
与物理成绩
如下表:
数学成绩 |
|
|
|
|
|
物理成绩 |
|
|
|
|
|
(1)数据表明
与
之间有较强的线性关系,求
关于
的线性回归方程;
(2)本次考试中,规定数学成绩达到
分为优秀,物理成绩达到
分为优秀.若该班数学优秀率与物理优秀率分别为
和
,且除去抽走的
名同学外,剩下的同学中数学优秀但物理不优秀的同学共有
人,请写出
列联表,判断能否在犯错误的概率不超过
的前提下认为数学优秀与物理优秀有关?
参考数据:
,
;
,
;![]()