【题目】已知椭圆C的焦点为(,0),(,0),且椭圆C过点M(4,1),直线l:不过点M,且与椭圆交于不同的两点A,B.
(1)求椭圆C的标准方程;
(2)求证:直线MA,MB与x轴总围成一个等腰三角形.
【题目】已知椭圆的左、右焦点分别为、,斜率为1的直线l交椭圆于A、B两点,且线段AB的中点坐标为.
求椭圆的方程;
若P是椭圆与双曲线在第一象限的交点,求的值.
【题目】若是各项均为正数的数列的前项和,且.
(1)求的值;
(2)设,且数列的前项和满足对任意正整数恒成立,求实数的取值范围;
(3)设,问:是否存在正整数,使得对一切正整数恒成立?若存在,请求出实数的值;若不存在,请说明理由.
【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为 ,其范围为 ,分别有五个级别: 畅通; 基本畅通; 轻度拥堵; 中度拥堵; 严重拥堵.晚高峰时段 ,从某市交通指挥中心选取了市区 个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.
(Ⅰ)求出轻度拥堵,中度拥堵,严重拥堵路段各有多少个;
(Ⅱ)用分层抽样的方法从交通指数在 , , 的路段中共抽取个路段,求依次抽取的三个级别路段的个数;
(Ⅲ)从(Ⅱ)中抽取的个路段中任取个,求至少个路段为轻度拥堵的概率.
【题目】如图所示,合肥一中积极开展美丽校园建设,现拟在边长为0.6千米的正方形地块上划出一片三角形地块建设小型生态园,点分别在边上.
(1)当点分别时边中点和靠近的三等分点时,求的余弦值;
(2)实地勘察后发现,由于地形等原因,的周长必须为1.2千米,请研究是否为定值,若是,求此定值,若不是,请说明理由.
【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求数列,的通项公式;
(2)设数列满足,数列的前n项和为,若不等式
对一切n∈N*恒成立,求实数λ的取值范围.
【题目】已知函数,,其中.
(1)讨论的单调性;
(2)设函数,当时,若,,总有成立,求实数的取值范围.
【题目】已知在中,角的对边分别为,且.
(2)若,求的取值范围.
【题目】小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25-x万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?
【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.