【题目】已知函数f(x)=2sin2x-2sin2x-a.
①若f(x)=0在x∈R上有解,则a的取值范围是______;
②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______
【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A. f B. f
C. f D. f
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
【题目】椭圆离心率为,,是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.
【题目】已知函数.
(1)当时,求该函数的值域;
(2)求不等式的解集;
(3)若对于恒成立,求的取值范围.
【题目】如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn .(1)求{an}的通项公式;(2)求{bn}的前n项和.
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若为偶函数,求实数的值.
【题目】已知函数,.
(1)求函数的单调递增区间;
(2)当时,方程恰有两个不同的实数根,求实数的取值范围;
(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);
(2)根据表格中的数据作出一个周期的图象;
(3)求函数在区间上的最大值和最小值.