题目内容
【题目】已知函数.
(1)当时,求该函数的值域;
(2)求不等式的解集;
(3)若对于恒成立,求的取值范围.
【答案】(1)(2)或(3)
【解析】
(1)利用换元法并结合二次函数的性质即可求出函数值域;(2)利用换元法并结合一元二次不等式的性质,即可求出不等式的解集;(3)将分离于不等式的一端,对另一端求它的最值,进而可以求出的取值范围。
(1)令,,则,
函数转化为,,
则二次函数,在上单调递减,在上单调递增,
所以当时,取到最小值为,当时,取到最大值为5,
故当时,函数的值域为.
(2)由题得,令,
则,即,
解得或,
当时,即,解得,
当时,即,解得,
故不等式的解集为或.
(3)由于对于上恒成立,
令,,则
即在上恒成立,
所以在上恒成立,
因为函数在上单调递增,也在上单调递增,
所以函数在上单调递增,它的最大值为,
故时,对于恒成立。
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);
(2)根据表格中的数据作出一个周期的图象;
(3)求函数在区间上的最大值和最小值.