【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )A.6B.7C.8D.9
【题目】已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x= 时,函数f(x)取得最小值,则下列结论正确的是( )A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)
【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)
【题目】设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数
【题目】已知函数f(x)=sinωxcosωx+ cos2ωx﹣ (ω>0),直线x=x1 , x=x2是y=f(x)图象的任意两条对称轴,且|x1﹣x2|的最小值为 .(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间 上有且只有一个实数解,求实数k的取值范围.
【题目】某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y= 是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.
【题目】如图,在四边形ABCD中,CA=CD= AB=1, =1,sin∠BCD= . (1)求BC的长;(2)求四边形ABCD的面积;(3)求sinD的值.
【题目】已知f(x)是定义在[1,+∞]上的函数,且f(x)= ,则函数y=2xf(x)﹣3在区间(1,2015)上零点的个数为 .
【题目】设x∈R,f(x)= ,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是 .
【题目】如图,在△ABC中,AB=AC,BC=2, , ,若 ,则 = .