题目内容
【题目】设x∈R,f(x)= ,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是 .
【答案】k≥2
【解析】解:∵f(x)= ,
∴函数f(x)在区间(﹣∞,0]上为增函数,在区间[0,+∞)上为减函数,
且函数f(2x)在区间(﹣∞,0]上为增函数,在区间[0,+∞)上为减函数,
令F(x)=f(x)+f(2x),
根据函数单调性的性质可得F(x)=f(x)+f(2x)在区间(﹣∞,0]上为增函数,在区间[0,+∞)上为减函数,
故当x=0时,函数F(x)取最大值2,
若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,
则实数k的取值范围是k≥2
所以答案是:k≥2
【考点精析】根据题目的已知条件,利用指数函数的单调性与特殊点的相关知识可以得到问题的答案,需要掌握0<a<1时:在定义域上是单调减函数;a>1时:在定义域上是单调增函数.
练习册系列答案
相关题目