题目内容

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

【答案】A
【解析】解:设g(x)= ,则g(x)的导数为:g′(x)=
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)= 为减函数,
又∵g(﹣x)= = = =g(x),
∴函数g(x)为定义域上的偶函数
又∵g(﹣1)= =0,
∴函数g(x)的图象性质类似如图:
数形结合可得,不等式f(x)>0xg(x)>0

0<x<1或x<﹣1.
故选:A.

由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)= 为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于xg(x)>0,数形结合解不等式组即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网