【题目】函数 则f(﹣1)= , 若方程f(x)=m有两个不同的实数根,则m的取值范围为
【题目】如图,已知双曲线 =1(a>0,b>0)的左右焦点分别为F1 , F2 , |F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是( ) A.3B.2C.D.
【题目】已知直线l:x+2y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为 .
【题目】设x,y满足条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 的最小值为( )A.B.C.D.4
【题目】定义:若函数的定义域为,且存在非零常数,对任意 , 恒成立,则称为线周期函数, 为的线周期.
(1)下列函数①,②,③(其中表示不超过x的最大整数),是线周期函数的是 (直接填写序号);
(2)若为线周期函数,其线周期为,求证: 为周期函数;
(3)若为线周期函数,求的值.
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0
2
(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.
【题目】设f(x)=|x﹣1|+|x+1|,(x∈R)(1)求证:f(x)≥2;(2)若不等式f(x)≥ 对任意非零实数b恒成立,求x的取值范围.
【题目】对于数集,其中, .定义向量集.若对于任意,存在,使得,则称具有性质.例如具有性质.
(1)若,且具有性质,求的值;
(2)若具有性质,求证: ,且当时, .
【题目】已知函数f(x)=lnx+ ,其中a为大于零的常数..(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;(2)求函数f(x)在区间[1,2]上的最小值;(3)求证:对于任意的n∈N* , 且n>1时,都有lnn> + +…+ 成立.
【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (I)求曲线C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.