【题目】某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:(1)求a,b的值,并画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.
【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得
(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;
(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?
附:在 中, 其中为样本平均值.
【题目】已知函数, .
(1)设函数,求函数在区间上的值域;
(2)定义表示中较小者,设函数 .
①求函数的单调区间及最值;
②若关于的方程有两个不同的实根,求实数的取值范围.
【题目】已知{an}是公差不为零的等差数列,a1=1,且a1 , a3 , a9成等比数列.(1)求数列{an}的通项;(2)设数列{an}的前n项和为Sn , 令 ,求数列{bn}的前n项和Tn .
【题目】给出下列不等式:1+ + >1,1+ + +…+ > ,1+ + +…+ >2…,则按此规律可猜想第n个不等式为 .
【题目】如图,在三棱柱中, 平面, , 在线段上, , .
(1)求证: ;
(2)试探究:在上是否存在点,满足平面,若存在,请指出点的位置,并给出证明;若不存在,说明理由.
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)
【题目】已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),a+b+c=0,且f(0)f(1)>0,设x1 , x2是方程f(x)=0的两个根,则|x1﹣x2|的取值范围为( )A.B.C.D.
【题目】如图,在四棱锥中, 底面, , , , .
(1)求直线与所成角的大小;
(2)证明: .
【题目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是 ,则a的值为( )A.B.C.D.