【题目】已知双曲线 的左、右焦点分别为F1、F2 , P为C的右支上一点,且|PF2|=|F1F2|,则 等于( )A.24B.48C.50D.56
【题目】已知椭圆C: +y2=1. (Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)经过椭圆C的左焦点F1作直线l,直线l与椭圆C相交于A,B两点,若|AB|= ,求直线l的方程.
【题目】已知抛物线C:y2=﹣4x. (Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.
【题目】已知两点A(3,2),B(﹣1,2),圆C以线段AB为直径. (Ⅰ)求圆C的方程;(Ⅱ)求过点M(3,1)的圆C的切线方程.
【题目】(Ⅰ)求平行于直线x﹣2y+1=0,且与它的距离为2 的直线方程; (Ⅱ)求经过两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.
【题目】在公差不为零的等差数列{an}和等比数列{bn}中.已知a1=b1=1.a2=b2 . a6=b3(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn;(2)求数列{anbn}的前n项和Sn .
【题目】已知函数f(x)=loga(2x+1),g(x)=loga(1﹣2x)(a>0且a≠1)(1)求函数F(x)=f(x)﹣g(x)的定义域;(2)判断F(x)=f(x)﹣g(x)的奇偶性,并说明理由;(3)确定x为何值时,有f(x)﹣g(x)>0.
【题目】已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|< )的最大值为2 ,最小值为﹣ ,周期为π,且图象过(0,﹣ ).(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间.
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.
【题目】已知圆C:x2+y2﹣8y+12=0,直线l经过点D(﹣2,0),且斜率为k.(1)求以线段CD为直径的圆E的方程;(2)若直线l与圆C相离,求k的取值范围.