题目内容
【题目】已知双曲线 的左、右焦点分别为F1、F2 , P为C的右支上一点,且|PF2|=|F1F2|,则 等于( )
A.24
B.48
C.50
D.56
【答案】C
【解析】解:根据双曲线方程 , 得a2=4,b2=5,c= =3,所以双曲线的焦点分别为F1(﹣3,0)、F2(3,0),
设点P的坐标为(m,n),其中m>2,则
∵点P在双曲线上,且|PF2|=|F1F2|,
∴ ,解之得m= ,n=±
∵ =(﹣3﹣m,﹣n), =(3﹣m,﹣n)
∴ =(﹣3﹣m)(3﹣m)+(﹣n)(﹣n)=m2﹣9+n2= ﹣9+ =50
故选C
设点P的坐标为(m,n),其中m>2,根据点P在双曲线上且|PF2|=|F1F2|,建立关于m、n的方程组,解之得m、n的值,从而得到向量 、 的坐标,利用向量数量积的坐标公式,可算出 的值.
练习册系列答案
相关题目
【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:
健步走步数(前步) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.