【题目】已知实数,满足,实数,满足,则的最小值为__________.
【题目】已知函数f(x)=2cosxsin(x﹣ )+ .(1)求函数f(x)的对称轴方程;(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈[﹣ , ]上有三个实数解,求实数m的取值范围.
【题目】如图,四棱锥中, , 为线段上一点, 为的中点.
(1)证明: 平面;
(2)求直线与平面所成角的正弦值;
【题目】四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC;(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求二面角D﹣AE﹣C的大小.
【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).(1)若l与圆C相切,求l的方程;(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.
【题目】对于定义域为D的函数y=f(x),若同时满足下列条件: ①f(x)在D内单调递增或单调递减;②存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(1)求闭函数y=﹣x3符合条件②的区间[a,b](2)判断函数f(x)= 是否为闭函数?并说明理由;(3)若y=k+ 是闭函数,求实数k的范围.
【题目】(12分)已知函数 .
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在 上为单调增函数,求a的取值范围;
(3)设m,n为正实数,且m>n,求证: .
【题目】已知直线: ax+by=1(其中a,b是实数) 与圆:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积最小值为 .
【题目】已知p:方程x2+mx+1=0有两个不相等的负根;q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.
【题目】已知F1、F2为双曲线 ﹣ =1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2 . 则双曲线离心率的值为