【题目】已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).
(1)求抛物线C的方程;
(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积。
【题目】选修4-4:坐标系与参数方程,在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极轴,以轴正半轴为极轴)中,圆的方程为.
(1)求圆的圆心到直线的距离;
(2)设圆与直线交于点,若点的坐标为,求.
【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分别是BC,PC的中点。
(1)求证:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
【题目】如图,正四面体的顶点、、分别在两两垂直的三条射线, , 上,则在下列命题中,错误的是( )
A. 是正三棱锥
B. 直线与平面相交
C. 直线与平面所成的角的正弦值为
D. 异面直线和所成角是
【题目】某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。
(1)求其中的甲乙两人必须相邻的站法有多少种?
(2)求其中的甲乙两人不相邻的站法有多少种?
(3)求甲不站最左端且乙不站最右端的站法有多少种 ?
【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,.已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示.
(1)求的值,并根据频率分布直方图,估计红包金额的众数;
(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望.
【题目】已知函数.
(1)讨论的单调性;
(2)若恒成立,求实数的最大值.
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为原点, 极轴为轴的正半轴, 建立平面直角坐标系, 直线的参数方程为为参数).
(1)判断直线与曲线的位置关系, 并说明理由;
(2)若直线与曲线相交于两点, 且,求直线的斜率.
【题目】设数列的前项和为,且,数列为等差数列,且, .
(1)求数列和的通项公式;
(2)设,求数列的前项和.
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.