题目内容
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
【答案】(1)(2)
【解析】
试题分析:本题考查的知识点是古典概型,我们要列出一枚骰子连掷两次先后出现的点数所有的情况个数
(1)再根求出满足条件直线ax+by+5=0与圆的事件个数,然后代入古典概型公式即可求解;
(2)再根求出满足条件a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的事件个数,然后代入古典概型公式即可求解
试题解析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵直线ax+by+c=0与圆相切的充要条件是
即:,由于a,b∈{1,2,3,4,5,6}
∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.
∴直线ax+by+c=0与圆相切的概率是
(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.
∵三角形的一边长为5
∴当a=1时,b=5,(1,5,5) 1种
当a=2时,b=5,(2,5,5) 1种
当a=3时,b=3,5,(3,3,5),(3,5,5) 2种
当a=4时,b=4,5,(4,4,5),(4,5,5) 2种
当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5) 6种
当a=6时,b=5,6,(6,5,5),(6,6,5) 2种
故满足条件的不同情况共有14种
答:三条线段能围成不同的等腰三角形的概率为.
练习册系列答案
相关题目