题目内容
【题目】已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).
(1)求抛物线C的方程;
(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积。
【答案】(1)y2=4x(2)
【解析】
试题分析:(1)把点A(1,-2)代入抛物线C:y2=2px(p>0),解得p即可得出;(2)F(1,0).设M,N.直线l的方程为:y=x-1.与抛物线方程联立可得根与系数的关系,利用弦长公式可得.利用点到直线的距离公式可得:原点O到直线MN的距离d.利用△OMN的面积即可得出
试题解析:(1)把点A(1,﹣2)代入抛物线C:y2=2px(p>0),可得(﹣2)2=2p×1,解得p=2.
∴抛物线C的方程为:y2=4x.
(2)F(1,0).设M(x1,y1),N(x2,y2).
直线l的方程为:y=x﹣1.联立,化为x2﹣6x+1=0,∴x1+x2=6,x1x2=1.
∴|MN|===8.原点O到直线MN的距离d=.∴△OMN的面积S===.
练习册系列答案
相关题目
【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:
阅读名著的本数 | 1 | 2 | 3 | 4 | 5 |
男生人数 | 3 | 1 | 2 | 1 | 3 |
女生人数 | 1 | 3 | 3 | 1 | 2 |
(1)试根据上述数据,求这个班级女生阅读名著的平均本数;
(2)若从阅读本名著的学生中任选人交流读书心得,求选到男生和女生各人的概率;
(3)试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小(只需写出结论).