19.城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的90名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如表所示(单位:min):
(1)估计这90名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
| 组别 | 候车时间 | 人数 |
| 一 | [0,5) | 2 |
| 二 | [5,10) | 6 |
| 三 | [10,15) | 4 |
| 四 | [15,20) | 2 |
| 五 | [20,25] | 1 |
(2)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
17.
如图是某几何体的三视图,则该几何体的体积为( )
| A. | 18 | B. | 24 | C. | 27 | D. | 32 |
16.执行如图的程序框图,若输入的x的值为29,则输出的n的值为( )

| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
15.某校从参加高三年级学业水平考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),其样本频率分布表如下(部分数据丢失):
(Ⅰ)分别求出上表中的x;P1和P2的大小
(Ⅱ)估计成绩在120分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[130,150)中选两位同学,共同帮助[30,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.
0 241406 241414 241420 241424 241430 241432 241436 241442 241444 241450 241456 241460 241462 241466 241472 241474 241480 241484 241486 241490 241492 241496 241498 241500 241501 241502 241504 241505 241506 241508 241510 241514 241516 241520 241522 241526 241532 241534 241540 241544 241546 241550 241556 241562 241564 241570 241574 241576 241582 241586 241592 241600 266669
| 分组 | 频数 | 频率 |
| [30,50) | 2 | 0.04 |
| [50,70) | 3 | 0.06 |
| [70,90) | 14 | P1 |
| [90,110) | 15 | 0.30 |
| [110,130) | x | P2 |
| [130,150) | 4 | 0.08 |
| 合计 | 50 | 1 |
(Ⅱ)估计成绩在120分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[130,150)中选两位同学,共同帮助[30,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.