题目内容
13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).分析 由已知可得:M,N中必须含有元素1,3,再利用理想配集的定义即可得出.
解答 解 符合条件的理想配集有
①M={1,3},N={1,3}.
②M={1,3},N={1,2,3}.
③M={1,2,3},N={1,3}.
共3个.
点评 本题考查了理想配集、新定义、集合运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.已知正项等比数列{an}的前n项和为Sn,且S8-2S4=5,则a9+a10+a11+a12的最小值为( )
| A. | 10 | B. | 15 | C. | 20 | D. | 25 |
2.某同学同时投掷两颗骰子,得到点数分别为a,b,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e>$\frac{\sqrt{3}}{2}$的概率是( )
| A. | $\frac{1}{18}$ | B. | $\frac{5}{36}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |