题目内容
18.观察下列各式:1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{9}{5}$.
分析 由题意可得:等号右边的分子为连续的偶数,分母连续的整数,即可得出.
解答 解:前3个等式的右边分别为$\frac{4}{3}$,$\frac{6}{4}$,$\frac{8}{5}$,即分子是从4开始的偶数列,分母是从3开始的整数列,
则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{18}{10}$=$\frac{9}{5}$,
故答案为:$\frac{9}{5}$
点评 本题考查了数列通项公式的求法、观察法、归纳法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
9.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频数分布及支持“生育二胎”人数如下表:
(I)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(Ⅱ)若对年龄在[5,15]的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:P(K2≥3.841)=0.050,P(k2≥6.635)=0.010,P(K2≥10.828)=0.001.
| 年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 支持 | a= | c= | |
| 不支持 | b= | d= | |
| 合计 |
参考数据:P(K2≥3.841)=0.050,P(k2≥6.635)=0.010,P(K2≥10.828)=0.001.
7.已知函数f(x)是定义在R上的奇函数且单调递增,则不等式f(x)<f(x2)的解集是( )
| A. | (-∞,0)∪(1,+∞) | B. | (-∞,0)∪[1,+∞) | C. | (-∞,0]∪[1,+∞) | D. | (-∞,0)∪(0,1) |
1.已知角α的终边经过点P(3,-4),则角α的正切值为( )
| A. | $\frac{3}{4}$ | B. | -4 | C. | $-\frac{4}{3}$ | D. | $\frac{3}{5}$ |