题目内容
10.设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M?∁UP,求实数a的取值范围.分析 求出∁UP,M?∁UP,对M分M=∅,M≠∅,两种情况讨论.根据集合的运算求解即可.
解答 解:∵全集U=R,P={x|-2≤x≤1},
∴∁UP={x|x<-2或x>1},
∵M?∁UP,
∴分M=∅,M≠∅,两种情况讨论.
(1)M≠∅时,如图可得$\left\{\begin{array}{l}{3a<2a+5}\\{2a+5≤-2}\end{array}\right.$或$\left\{\begin{array}{l}{3a<2a+5}\\{3a≥1}\end{array}\right.$,![]()
∴a≤-$\frac{7}{2}$,或$\frac{1}{3}$≤a<5.
(2)M=∅时,
应有:3a≥2a+5,
解得:a≥5.
综上可知,a≤-$\frac{7}{2}$或a≥$\frac{1}{3}$.
故得实数a的取值范围(-∞,-$\frac{7}{2}$]或[$\frac{1}{3}$,+∞).
点评 本题主要考查集合的基本运算和讨论思想,属于基础题.
练习册系列答案
相关题目
1.三棱锥D-ABC及其三视图中的正视图和俯视图如图所示,则棱BD的长为( )

| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
18.规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )
| A. | $\frac{8}{125}$ | B. | $\frac{117}{125}$ | C. | $\frac{81}{125}$ | D. | $\frac{27}{125}$ |
15.某校从参加高三年级学业水平考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),其样本频率分布表如下(部分数据丢失):
(Ⅰ)分别求出上表中的x;P1和P2的大小
(Ⅱ)估计成绩在120分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[130,150)中选两位同学,共同帮助[30,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.
| 分组 | 频数 | 频率 |
| [30,50) | 2 | 0.04 |
| [50,70) | 3 | 0.06 |
| [70,90) | 14 | P1 |
| [90,110) | 15 | 0.30 |
| [110,130) | x | P2 |
| [130,150) | 4 | 0.08 |
| 合计 | 50 | 1 |
(Ⅱ)估计成绩在120分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[130,150)中选两位同学,共同帮助[30,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.
19.从集合{-2,-1,1,2}中有放回地任取2次元素分别作为直线Ax+By=0中的A、B,则该直线恰好为坐标系第二、四象限角平分线的概率是( )
| A. | $\frac{1}{25}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
13.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
由表中数据,求得线性回归方程$\overline y=0.6x+\overline a$,根据回归方程,预测加工70个零件所花费的时间为100分钟.
| 零件数x(个) | 10 | 20 | 30 | 40 | 50 |
| 加工时间y(分钟) | 64 | 69 | 75 | 82 | 90 |