题目内容
11.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.
分析 (1)利用并集与补集以及交集的运算法则求解即可.
(2)利用交集是空集,真假求解a 的范围即可.
解答 解:(1)因为A={x|2≤x<7},B={x|3<x<10},
所以A∪B={x|2≤x<10}.
因为A={x|2≤x<7},
所以∁RA={x|x<2,或x≥7},
则(∁RA)∩B={x|7≤x<10}.
(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2,
所以a的取值范围为{a|a>2}.
点评 本题考查集合的基本运算,是基础题.
练习册系列答案
相关题目
1.某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗生长情况,从这批树苗中随机测量了其中50棵树苗的高度(单位:厘米),把这些高度列成了如下的频率分布表:
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?
| 组别 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 2 | 3 | 14 | 15 | 12 | 4 |
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?
2.如图是某几何体的三视图,则该几何体的俯视图的周长为( )

| A. | 7$+\sqrt{7}$ | B. | 4+4$\sqrt{3}$ | C. | 4+4$\sqrt{2}$ | D. | 6+2$\sqrt{2}$ |
19.已知抛物线C:x2=2py(p>0)的焦点为F,点P为抛物线C上的一点,点P处的切线与直线y=x平行,且|PF|=3,则抛物线C的方程为( )
| A. | x2=4y | B. | x2=8y | C. | x2=6y | D. | x2=16y |
16.执行如图的程序框图,若输入的x的值为29,则输出的n的值为( )

| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
14.已知在平面直角坐标系xoy中,直线x-ky+2k-1=0与圆x2+y2=4交于A,B两点,若在该圆上还存在一点C,使得$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}$成立,则实数k的值为( )
| A. | 0 | B. | $\frac{4}{3}$ | C. | 0或$\frac{4}{3}$ | D. | 0或$-\frac{4}{3}$ |