11.函数$f(x)=ln\frac{3x}{2}-\frac{2}{x}$的零点一定位于区间( )
| A. | (4,5) | B. | (3,4) | C. | (2,3) | D. | (1,2) |
9.等差数列{an}中,若a10-a6=4,a2,a4,a8成等比数列,则a1=( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
8.函数y=ln(-x2+2x+3)的单调递减区间是( )
| A. | (1,+∞) | B. | (-1,1] | C. | [1,3) | D. | (-∞,1) |
7.利用计算机在区间($\frac{1}{3}$,2)内产生随机数a,则不等式ln(3a-1)<0成立的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
3.我国古代数学名著《张邱建算经》:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第3人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是( )
| A. | 193 | B. | 194 | C. | 195 | D. | 196 |
2.某市为加强市民的环保意识,组织了“支持环保”签名活动,分别在甲、乙、丙、丁四个不同的场地进行支持签名活动,统计数据表格如下:
(1)若采用分层抽样的方法从获得签名的人中抽取10名幸运之星,再从甲、丙两个场地抽取的幸运之星中任选2人接受电视台采访,计算这2人来自不同场地的概率;
(2)电视台记者对场地的签名人进行了是否“支持环保”问卷调查,统计结果如下(单位:人):现定义W=|$\frac{a}{a+b}$-$\frac{c}{c+d}$|,请根据W的值判断,能否在犯错误的概率不超过0.001的前提下认为“支持环保”与性别有关.
临界值表:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
0 241134 241142 241148 241152 241158 241160 241164 241170 241172 241178 241184 241188 241190 241194 241200 241202 241208 241212 241214 241218 241220 241224 241226 241228 241229 241230 241232 241233 241234 241236 241238 241242 241244 241248 241250 241254 241260 241262 241268 241272 241274 241278 241284 241290 241292 241298 241302 241304 241310 241314 241320 241328 266669
| 场地 | 甲 | 乙 | 丙 | 丁 |
| 获得签名人数 | 45 | 60 | 30 | 15 |
(2)电视台记者对场地的签名人进行了是否“支持环保”问卷调查,统计结果如下(单位:人):现定义W=|$\frac{a}{a+b}$-$\frac{c}{c+d}$|,请根据W的值判断,能否在犯错误的概率不超过0.001的前提下认为“支持环保”与性别有关.
| 支持 | 不支持 | 合计 | |
| 男 | 25 | 5 | 30 |
| 女 | 15 | 15 | 30 |
| 合计 | 40 | 20 | 60 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |