17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin$\frac{C}{2}=\frac{\sqrt{10}}{4}$,若△ABC的面积为$\frac{3\sqrt{15}}{4}$,且$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,则c的值为( )
| A. | 2$\sqrt{2}$ | B. | 3 | C. | 2$\sqrt{3}$ | D. | 4 |
16.复数z满足$\frac{z}{1+i}=zi+1$,则复数z的共轭复数为( )
| A. | $\frac{3}{5}+\frac{1}{5}i$ | B. | $\frac{3}{5}-\frac{1}{5}i$ | C. | $\frac{1}{5}+\frac{3}{5}i$ | D. | $\frac{1}{5}-\frac{3}{5}i$ |
15.
我们把圆心在一条直线上,且相邻两圆彼此外切的一组圆叫做“串圆”,在如图所示的“串圆”中,圆C1和圆C3的方程分别为:x2+y2=1和(x-4)2+(y-2)2=1,若直线ax+2by-2=0(a,b>0)始终平分圆C2的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为( )
| A. | 1 | B. | 5 | C. | 4$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
14.已知a=ln$\frac{π}{2}$-$\frac{π}{2}$,b=lnπ-π,c=ln$\frac{π}{3}$-$\frac{π}{3}$,则a,b,c的大小顺序为( )
| A. | b>c>a | B. | a>b>c | C. | a>c>b | D. | c>a>b |
11.已知直线l过点P(1,1),且与曲线y=x3在点P处的切线互相垂直,则直线l的方程为( )
| A. | x+3y+4=0 | B. | x+3y-4=0 | C. | 3x-y+2=0 | D. | 3x-y-2=0 |
10.已知随机变量ξ服从正态分布N(μ,16),且P(ξ<-2)+P(ξ≤6)=1,则μ=( )
| A. | -4 | B. | 4 | C. | -2 | D. | 2 |
9.”公益行“是由某公益慈善基金发起并主办的一款将用户的运动数据转化为公益步数的捐助公益项目的产品,捐助规则是满10000步方可捐助且个人捐出10000步等价于捐出1元,现粗略统计该项目中其中200名的捐助情况表如下:
(Ⅰ)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在[200,250)之间人数ξ的分布列;
(Ⅱ)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在[100,150)的奖励红包5元,捐款额在[150,200)的奖励红包8元,捐款额在[200,250)的奖励红包10元,捐款额大于250的奖励红包15元,已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.
0 241070 241078 241084 241088 241094 241096 241100 241106 241108 241114 241120 241124 241126 241130 241136 241138 241144 241148 241150 241154 241156 241160 241162 241164 241165 241166 241168 241169 241170 241172 241174 241178 241180 241184 241186 241190 241196 241198 241204 241208 241210 241214 241220 241226 241228 241234 241238 241240 241246 241250 241256 241264 266669
| 捐款金额(单位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,250) | [250,300) |
| 捐款人数 | 4 | 152 | 26 | 10 | 3 | 5 |
(Ⅱ)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在[100,150)的奖励红包5元,捐款额在[150,200)的奖励红包8元,捐款额在[200,250)的奖励红包10元,捐款额大于250的奖励红包15元,已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.