ÌâÄ¿ÄÚÈÝ
8£®¹Û²ìÏÂÁеÈʽ£º$\sqrt{{1}^{3}}$=1£¬$\sqrt{{1}^{3}+{2}^{3}}$=3£¬$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}}$=6£¬$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}}$=10
$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}+{5}^{3}}$=15
¡
£¨¢ñ£©²ÂÏëµÚn£¨n¡ÊN+£©¸öµÈʽ£»
£¨¢ò£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÄãµÄ²ÂÏ룮
·ÖÎö £¨¢ñ£©¹éÄɲÂÏë¼´¿É£¬
£¨¢ò£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
½â´ð ½â£º£¨¢ñ£©µÚn£¨n¡ÊN+£©¸öµÈʽ$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡+{n}^{2}}$=$\frac{n£¨n+1£©}{2}$£®
£¨¢ò£©Ö¤Ã÷¢Ùµ±n=1ʱ£¬µÈʽÏÔÈ»³ÉÁ¢£¬
¢Ú¼ÙÉèn=kʱ£¬µÈʽ³ÉÁ¢£¬¼´$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡+{k}^{2}}$=$\frac{k£¨k+1£©}{2}$£¬
¼´12+22+32+¡+k2=$\frac{{k}^{2}£¨k+1£©^{2}}{4}$£¬
ÄÇôµ±n=k+1ʱ£¬×ó±ß=$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡+£¨k+1£©^{2}}$
=${\sqrt{\frac{{k}^{2}£¨k+1£©^{2}}{4}+£¨k+1£©^{2}}}^{\;}$=$\sqrt{\frac{£¨k+1£©^{2}£¨{k}^{2}+4k+4£©}{4}}$=$\sqrt{\frac{£¨k+1£©^{2}£¨k+2£©^{2}}{4}}$=$\frac{£¨k+1£©£¨k+2£©}{2}$£¬
ËùÒÔµ±n=k+1ʱ£¬µÈʽ³ÉÁ¢£¬
ÓÉ¢Ù¢ÚµÈʽ¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£®
µãÆÀ ¿¼²éÁËÊýѧ¹éÄÉ·¨Ó¦Óᢲ»µÈʽµÄÐÔÖÊ£¬¿¼²éÁ˹۲ì·ÖÎö²ÂÏë¹éÄÉÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®µã£¨2£¬0£©¹ØÓÚÖ±Ïßy=-x-4µÄ¶Ô³ÆµãÊÇ£¨¡¡¡¡£©
| A£® | £¨-4£¬-6£© | B£® | £¨-6£¬-4£© | C£® | £¨-5£¬-7£© | D£® | £¨-7£¬-5£© |
16£®º¯Êýf£¨x£©=3sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©£¬Ö±Ïßx=$\frac{¦Ð}{4}$ºÍx=$\frac{5¦Ð}{4}$ÊÇf£¨x£©ÏàÁÚµÄÁ½Ìõ¶Ô³ÆÖᣬÔòf£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
| A£® | f£¨x£©=3sin£¨x+$\frac{¦Ð}{4}$£© | B£® | f£¨x£©=3sin£¨2x$+\frac{¦Ð}{4}$£© | C£® | f£¨x£©=3sin£¨x$+\frac{3¦Ð}{4}$£© | D£® | f£¨x£©=3sin£¨2x$+\frac{3¦Ð}{4}$£© |
20£®ÈÝÁ¿Îª20µÄÑù±¾Êý¾Ý£¬·Ö×éºóµÄƵÊýÈç±í£º
ÔòÑù±¾Êý¾ÝÂäÔÚÇø¼ä[10£¬50£©µÄƵÂÊΪ0.7£®
| ·Ö×é | [10£¬20£© | [20£¬30£© | [30£¬40£© | [40£¬50£© | [50£¬60£© | [60£¬70£© |
| ƵÊý | 2 | 3 | 4 | 5 | 4 | 2 |
17£®Èç¹ûa2£¾b2£¬ÄÇô£¨¡¡¡¡£©
| A£® | a£¾b£¾0 | B£® | a£¼b£¼0 | C£® | a+b£¼0»òa+b£¾0 | D£® | |a|£¾|b| |