ÌâÄ¿ÄÚÈÝ

8£®¹Û²ìÏÂÁеÈʽ£º
$\sqrt{{1}^{3}}$=1£¬$\sqrt{{1}^{3}+{2}^{3}}$=3£¬$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}}$=6£¬$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}}$=10
$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}+{5}^{3}}$=15
¡­
£¨¢ñ£©²ÂÏëµÚn£¨n¡ÊN+£©¸öµÈʽ£»
£¨¢ò£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÄãµÄ²ÂÏ룮

·ÖÎö £¨¢ñ£©¹éÄɲÂÏë¼´¿É£¬
£¨¢ò£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®

½â´ð ½â£º£¨¢ñ£©µÚn£¨n¡ÊN+£©¸öµÈʽ$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡­+{n}^{2}}$=$\frac{n£¨n+1£©}{2}$£®
£¨¢ò£©Ö¤Ã÷¢Ùµ±n=1ʱ£¬µÈʽÏÔÈ»³ÉÁ¢£¬
¢Ú¼ÙÉèn=kʱ£¬µÈʽ³ÉÁ¢£¬¼´$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡­+{k}^{2}}$=$\frac{k£¨k+1£©}{2}$£¬
¼´12+22+32+¡­+k2=$\frac{{k}^{2}£¨k+1£©^{2}}{4}$£¬
ÄÇôµ±n=k+1ʱ£¬×ó±ß=$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+¡­+£¨k+1£©^{2}}$
=${\sqrt{\frac{{k}^{2}£¨k+1£©^{2}}{4}+£¨k+1£©^{2}}}^{\;}$=$\sqrt{\frac{£¨k+1£©^{2}£¨{k}^{2}+4k+4£©}{4}}$=$\sqrt{\frac{£¨k+1£©^{2}£¨k+2£©^{2}}{4}}$=$\frac{£¨k+1£©£¨k+2£©}{2}$£¬
ËùÒÔµ±n=k+1ʱ£¬µÈʽ³ÉÁ¢£¬
ÓÉ¢Ù¢ÚµÈʽ¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£®

µãÆÀ ¿¼²éÁËÊýѧ¹éÄÉ·¨Ó¦Óᢲ»µÈʽµÄÐÔÖÊ£¬¿¼²éÁ˹۲ì·ÖÎö²ÂÏë¹éÄÉÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø